
CLIENT-SIDE

SCRIPTING USING

JAVASCRIPT

In Chapter 9 we learnt how to create web pages
using HTML. The HTML documents consist of many
tags, which tell the browser, how to display the
text or graphics. Also, we have learnt to create
static web pages; which are not interactive. To
make the HTML document interactive and
dynamic, there is a need to include some special
codes (scripts) along with HTML. One such
scripting language is JavaScript.

In this Chapter, we will learn about basics of
JavaScript and how to add dynamic effects in web
pages using expression, operators, popup boxes,
conversion functions, conditional statements,
looping statements, object manipulation
statements and JavaScript functions.

Introduction

10

Objectives

After completing this Chapter, the

student will be able to:

• define JavaScript,

• explain the basics of JavaScript,

• embed JavaScript code into a

HTML document,

• compare declare and use of

variables,

• use variables and literals in

expressions,

• describe different data types

and values,

• appreciate the use of branching

and loop statements,

• perform iteration with for loop,

• distinguish between while and

do…while loops,

• break and continue the loops,

• discuss some object manipulation

statements and

• consider defining and calling of

functions.

Content creation should not be recondite*. It should

not be this bizarre* arcana* that only experts and

gold-plated computer science gurus can do.

Brendan Eich

Creator of JavaScript

* recondite- complex, bizarre- strange/ unusual , arcana- deep secret

10.1 ABOUT JAVASCRIPT

JavaScript was created by Brendan Eich and it
came into existence in September 1995, when
Netscape 2.0 (a web browser) was released.

JavaScript was designed with a purpose to make web pages dynamic
and more interactive. JavaScript is one of the popular scripting
languages having following features :

(a) It can be used for client and server applications.
(b) It is platform independent which means it can run on any operating

systems (i.e. Linux, Microsoft Windows, Mac OS X etc.).
(c) JavaScript codes are needed to be embedded or referenced into

HTML documents then only it can run on a web browser.
(d) It is an interpreted language.
(e) It is a case-sensitive language and its keywords are in lowercase only.

10.1.1 DIFFERENCE BETWEEN JAVA AND JAVASCRIPT

Some people think that Java and JavaScript are same but both are
two completely different languages. Java is a general-purpose object-
oriented programming language from Sun Microsystems where as
JavaScript is an object-based scripting language. Script refers to short
programming statements to perform a task.

10.1.2 VERSIONS OF JAVASCRIPT

Some versions of JavaScript and web browsers are :

JavaScript Version Web Browsers

JavaScript 1.0 Navigator 2.0, Internet Explorer 3.0

JavaScript 1.3 Navigator 4.06-4.7x, Internet Explorer 4.0

JavaScript 1.5 Navigator 6.0, Mozilla, Internet Explorer 5.5
onwards

JavaScript 1.6 Mozilla Firefox 1.5

JavaScript 1.7 Mozilla Firefox 2.0

JavaScript 1.8 Mozilla Firefox 3.0

Microsoft has released several versions of JavaScript, currently
JavaScript version 5.7 is used with Internet Explorer 7.0.

10.2 CLIENT SERVER MODEL

Before stepping ahead, we should know about the Node, Client and
Server.

10.2.1 NODE

Node is a component or terminal connected to a network. The
components like laptops, PDAs, Internet enabled mobiles etc., can be
considered as node in a computer network.

Client-Side Scripting Using JavaScript

275275275275275

Computers and Communication Technology

276276276276276

10.2.2 CLIENT

It is a node computer that establishes connection with the server,
collects data from the user, sends it to the server, receives information
from the server and presents it to the user.

10.2.3 SERVER

In the context of client-server model, server is the counter part of
client. It is a computer that serves queries from the client. The programs
which respond to the request of clients are known as server
applications. The computer designed to run server application is known
as server machine. Web server, database server and mail server are
some examples of servers.

The Client Server Model is an architecture of computer network
where client and server interact by means of a network (Figure 10.1).
Client gathers data from the user as input and sends request to the
server. Server processes the request and sends the requested
information to the client. Railway reservation system, online banking
and online gaming are examples of client-server model.

I N D I A

Server Client

Network

Figure 10.1 : Client server model

10.2.4 CLIENT–SIDE JAVASCRIPT

Client-side JavaScript refers to JavaScript code that gets executed by
the web browser on the client machine. JavaScript statements can be
embedded in a HTML document that can respond to events such as
mouse clicks, form input, and page navigation etc. without any network
connection.

10.2.5 SERVER–SIDE JAVASCRIPT

Server-side JavaScript is also known as “LiveWire”. Like client-side
JavaScript, server-side JavaScript is also embedded within a HTML
document. When a query is made by the client, web server executes
the script after interpreting it.

Client-Side Scripting Using JavaScript

277277277277277

10.3 GETTING STARTED WITH JAVASCRIPT

JavaScript is not a full-fledged language and it needs to be embedded
within a HTML document. Otherwise, or to specify an external file that
contains the JavaScript code we can use word ‘script’ or ‘program’ for
the JavaScript code.

The most common way to set off a script is to use the HTML <script>
and </script> tags in HTML document. We can place our JavaScript
code in either the HEAD or BODY section of a HTML document.

The Syntax (General format) is

<SCRIPT [Attributes = [“Value”] ….]> Indicates starting of
JavaScript Code

… JavaScript statement(s);

</SCRIPT> Indicates ending of
JavaScript Code

The following table contains Script attributes, values and their
description.

Attribute Value Description

Type text/javascript the type of script
text/ecmascript
text/vbscript

Language Javascript vbscript name of scripting language

Src URL a URL to a file that contains
the script

Program 10.1 : First simple JavaScript program using document.write().

<HTML>

<HEAD>

<TITLE>My First JavaScript program

</TITLE>

</HEAD>

<BODY>

<SCRIPT type=”text/javascript”>

document.write(“Welcome to ↵

JavaScript Programming!”);

</SCRIPT>

</BODY>

</HTML>

Note : You notice that the code does not fit into single line. So, we used ↵ to
indicate that the code is continued and while inputting it you need not to type it.

Computers and Communication Technology

278278278278278

To run the above program, type program code given above using
any text editor like Notepad, Wordpad and save it as “<file
name>.htm” (e.g. abc.htm). Open this file by using any browser
application (i.e. Internet Explorer, Mozilla Firefox, Opera etc.).

Tools needed for Writing and Running JavaScript code :

Following tools are needed for working with JavaScript code:

a) Text Editors: We can choose any text editor or word processor (i.e.
Notepad, Wordpad etc.).

b) Browser: Browser interprets JavaScript code and shows the output
on browser’s document window.

10.3.1 PLACING THE JAVASCRIPT CODE

There are two ways to place the JavaScript code :

1. Embedded/Inline JavaScript : JavaScript code can be placed either
in the HEAD or in the BODY section of a HTML document.
a. It is advised to place JavaScript code in HEAD section when it is

required to be used more than once.
b. If the JavaScript code is small in size and used only once, it is

advisable to put it in the BODY section of the HTML document.
2. External JavaScript : In case, same JavaScript code needs to be

used in multiple documents then it is the best approach to place
JavaScript code in external files having extension as “ .js”. To do
so, we will use src attribute in <SCRIPT> tag to indicate the link for
the source JavaScript file.

Example : Illustration of the use of external JavaScript code.

<HTML>

<HEAD>

<TITLE>Using External JavaScript</TITLE>

</HEAD>

<BODY>

<SCRIPT language=”JavaScript” src=”abc.js”>

</SCRIPT>

<P> The actual JavaScript code exists in external file called

“abc.js”. </P>

</BODY>

</HTML>

Actual JavaScript file “abc.js”

Figure 10.3

Client-Side Scripting Using JavaScript

279279279279279

Output

Figure 10.4

10.4 STATEMENTS IN JAVASCRIPT

Statements are the commands or instructions given to the JavaScript
interpreter to take some actions as directed. A JavaScript interpreter
resides within almost Internet browsers. A collection of statements to
accomplish a job, is called as a script or program. The JavaScript
statements will be as follows :

a = 100; // stores value 100 in variable a

b = 200; // stores value 200 in variable b

c = a + b; // stores the sum of a and b in

// variable c

document.write

(“Sum of A and B : “); // displays the string

document.write(c); // displays the value of c

In JavaScript, semicolon(;) is used to end a statement but if two
statements are written in separate lines then semicolon can be omitted.
Some valid statements are :

(i) p=10
q=20

(ii) x=12; y=25 // semicolon(;) separating two statements.

Some invalid statements are :

x=12 y=25 // statements within the same line not separated by
semicolon (;)

Computers and Communication Technology

280280280280280

10.4.1 COMMENTS

Comments are the statements that are always ignored by the interpreter.
They are used to give remarks to the statement making it more readable
and understandable to other programmers. There are two types of
comments :

- Single line comment using double-slash (//).

- Multiple lines comment using /* and */ .

For example :

// This is a single-line comment.

/* This is a multiple-line comment.

 It can be of any length. */

10.4.2 LITERALS

Literals refer to the constant values, which are used directly in
JavaScript code. For example:

a=10;

b=5.7;

document.write(“Welcome”);

In above statements 10, 5.7, “Welcome” are literals.

10.4.3 IDENTIFIERS

Identifiers refer to the name of variables, functions, arrays, etc. created
by the programmer. It may be any sequence of characters in uppercase
and lowercase letters including numbers or underscore and dollar sign.
An identifier must not begin with a number and cannot have same
name as any of the keywords of the JavaScript.

Some valid identifiers are :

RollNo

bus_fee

_vp

$amt

Some invalid identifiers are :

to day // Space is not allowed

17nov // must not begin with a number

%age // no special character is allowed

Client-Side Scripting Using JavaScript

281281281281281

10.4.4 RESERVED WORDS OR KEYWORDS

Reserved words are used to give instructions to the JavaScript
interpreter and every reserved word has a specific meaning. These
cannot be used as identifiers in the program. This means, we cannot
use reserved words as names for variables, arrays, objects, functions
and so on. These words are also known as “Keywords”. A list of reserved
words in JavaScript is given in Appendix 10.1.

10.4.5 VARIABLES

A variable is an identifier that can store values. These values can be
changed during the execution of script. Once a value is stored in a
variable it can be accessed using the variable name. Variable
declaration is not compulsory, though it is a good practice to use variable
declaration. Keyword var is used to declare a variable.

Syntax

var var-name [= value] [..., var-name [= value]]

Example

var name = “Sachin”; // Here ‘name’ is variable

document.write(name); // Prints Sachin

A JavaScript variable can hold a value of any data type. For example :

i = 7;

document.write(i); // prints 7

i = “seven”; // JavaScript allows to assign string values

document.write(i); // prints seven

Some valid examples of variable declaration:

var cost;

var num, cust_no = 0;

var amount = 2000;

Naming Conventions

We should use meaningful name for a variable. A variable name must
start with a letter, underscore (_), or dollar sign ($). The subsequent
characters can be the digits (0-9). JavaScript is case sensitive, so the
variable name my_school is not the same as My_School.

Some valid variable names

f_name

India123

Computers and Communication Technology

282282282282282

_sumof

Some invalid variable names

10_numbers - must not begin with any number.

rate% - ‘%’ is not a valid character.

my name - Space is not allowed.

Program 10.2 : To find the sum of two numbers using var.

<HTML>

<HEAD>

<TITLE>Sum of two numbers</TITLE>

</HEAD>

<BODY>

<SCRIPT type=”text/javascript”>

var a = 100;

var b = 500;

var c = a + b;

document.write (“Sum of a & b ↵

: “ + c);

</SCRIPT>

</BODY>

</HTML>

10.5 DATA TYPES

JavaScript supports three basic data types – number, string, boolean
and two composite data types – arrays and objects.

10.5.1 NUMBER

The number variable holds any type of number, either an integer or a
real number. Some examples of numbers are:

29, -43, 3.40, 3.4323

10.5.2 STRING

A string is a collection of letters, digits, punctuation characters, and
so on. A string literal is enclosed within single quotes or double quotes
(‘or “). Examples of string literals are:

‘welcome’, “7.86” , “wouldn’t you exit now”, ‘ country=”India” ’

JavaScript also allows us to use Escape Sequence within string
literals. The escape sequence starts with a backslash (\), followed by
another character. This backslash tells browser to represent a special
action or character representation. For example, \” is an escape
sequence that represents a double quote (“).

Figure 10.5

Client-Side Scripting Using JavaScript

283283283283283

Escape Sequence Action/ Character Represented

\b Backspace

\n New line

\r Carriage return

\t Tab

\’ Single quote (‘)

\” Double quote (“)

\\ Backslash (\)

Example :

document.write (“Abhinav said, \”Earth doesn\’t revolve round ↵

the sun\”. But teacher corrected him.”);

Here, two types of escape characters are used \” and \’ in this
example.

Output

Abhinav said, “Earth doesn’t revolve round the sun”. But teacher
corrected him.

10.5.3 BOOLEAN VALUES

A boolean variable can store only two possible values either true or
false. Internally it is stored as 1 for true and 0 for false. It is used
to get the output of conditions, whether a condition results in true
or false.

Example

x == 100; // results true if x=100 otherwise false.

10.5.4 ARRAYS

An array is a collection of data values of same types having a common
name. Each data element in array is referenced by its position in the
array also called its index number. Individual array elements can be
referenced by the array name followed by the pair of square brackets
having its index number. The index number starts with zero in
JavaScript i.e. the first element in JavaScript has it index value as 0,
second has its index value as 1 and so on. An array can be declared in
any of the following ways :

var a = new a();

Computers and Communication Technology

284284284284284

var x = [];

var m = [2,4,”sun”];

An array is initialised with the specified values as its elements,
and its length is set to the number of arguments specified.

Example This creates an array name games with three elements.

games = [“Hockey”, “Cricket”, “Football”];

We can also store different types of values in an array.

For example :

var arr = new Array(); // creation of an array

arr[0] =”JAVASCIPT”; // stores String literal at index 0

arr[1] = 49.5; // stores real number at index 1

arr[2] = true; // stores Boolean value

10.5.5 NULL VALUE

JavaScript supports a special data type known as null that indicates
“no value or blank”. Note that null is not equal to 0.

Example

var distance = new object();

distance = null;

10.6 OBJECTS

JavaScript is an object based scripting language. It allows us to
define our own objects and make our own variable types. It also
offers a set of predefined objects. The tables, forms, buttons, images,
or links on our web page are examples of objects. The values
associated with object are properties and the actions that can perform
on objects are methods or behaviour. Property associated to an object
can be accessed as follows:

ObjectName.PropertyName

Now we will study, some of the predefined objects in JavaScript.

10.6.1 DOCUMENT OBJECT

The Document object is one of the parts of the Window object. It can be
accessed through the window.document property. The document object
represents a HTML document and it allows one to access all the elements
in a HTML document. For example: title of current document can be
accessed by document.title property.

Client-Side Scripting Using JavaScript

285285285285285

Some of the common properties of document object are :

Properties Purposes

Title returns/ sets title of the current document.

bgColor returns/ sets the background color of the current document.

fgColor returns/ sets the text color of the current document.

linkColor returns/ sets the color of hyperlinks in the document.

alinkColor returns/ sets the color of active links in the document.

vlinkColor returns/ sets the color of visited hyperlinks.

height returns the height of the current document.

width returns the width of the current document.

Forms returns a list of the FORM elements within the current document.

Images returns a list of the images in the current document.

URL returns a string containing the URL of the current document.

Location to load another URL in current document window.

Methods Purposes

open() Opens a document for writing.

write() Writes string/data to a document.

writeln() Writes string/data followed by a newline character to a
document.

close() Closes a document stream for writing.

Program 10.3 : To illustrate the properties and methods of the
document object.

<HTML>

<HEAD>

<TITLE>Document Properties</TITLE>

</HEAD>

<BODY>

<SCRIPT type=”text/javascript”>

document.fgColor = “green”; // sets text color

document.bgColor = “yellow”; // background color

document.title = “Chakde India”; // change title

document.linkColor = “navy”; // hyperlinks color

document.alinkColor = “red”; // active links

document.vlinkColor = “lime”; // visited hyperlinks

document.write(“
Do you want to play for India?”);

document.write(“
 Yes ”);

document.writeln(“
 No
”);

document.write(“
Title of current document: “ + document.title);

Computers and Communication Technology

286286286286286

10.6.2 DATE OBJECT

This object is used to set and manipulate date and time. JavaScript
dates are stored as the number of milliseconds since midnight, January
1, 1970. This date is called the epoch. Dates before 1970 are represented
by negative numbers. A date object can be created by using the new

keyword with Date().

Syntax

newDate()

new Date(milliseconds)

new Date(dateString)

new Date(yr_num, mo_num, day_num

[, hr_num, min_num, sec_num, ms_num])

Parameters

Milliseconds Milliseconds since 1 January 1970
00:00:00.

dateString Date String. e.g. “October 5, 2007”

yr_num, mo_num,day_num Year (e.g. 2007)Month (Value 0-11, 0 for
January and 11 for December), Day (1-31)

hr_num, min_num,sec_num, ms_num Values for Hour, Minutes, Second and
milliseconds

document.write(“
Height of current document: “ + document.height);

document.write(“
Width of current document: “ + document.width);

document.write(“
 URL of current document is: “ + document.URL);

//Use of document.links to list of all the hyperlinks

document.write(“
The List of Links in current document”);

var links = document.links;

for(var i = 0; i < links.length; i++)

{

document.write(“
”+ document.links[i]);

}

</SCRIPT>

</BODY>

</HTML>

Figure 10.6

Client-Side Scripting Using JavaScript

287287287287287

Different examples of using a date()

today = new Date();

dob = new Date(“October 5, 2007 12:50:00”);

doj = new Date(2007,10,5);

bday = new Date(2007,10,5,12,50,0);

Methods to read date values

We can use the get methods to get values from a Date object. Here are
some get methods that returns some value according to local time :

getDate() Returns the day of the month

getDay() Returns the day of the week

getFullYear() Returns the full year

getHours() Returns the hour

getMinutes() Returns the minutes

getMonth() Returns the month

getSeconds() Returns the seconds

getTime() Returns the numeric value corresponding to the time

getYear() Returns the year

Program 10.4 : A simple JavaScript program that displays today’s
date and current time.

<HTML>

<HEAD>

<TITLE>Displaying Time</TITLE>

</HEAD>

<BODY>

<CENTER>

<H1>Today’s Date and Current Time</H1>

</CENTER>

<SCRIPT type=”text/javascript”>

var today = new Date();

document.write(“<H2>”); // JavaScript allows the use

document.write(today); // of HTML formatting tag

document.write(“</H2>”); // with document.write

</SCRIPT>

</BODY>

</HTML>

Figure 10.7

Computers and Communication Technology

288288288288288

10.6.3 MATH OBJECT

This object contains methods and constants to carry more complex
mathematical operations. This object cannot be instantiated like other
objects. All properties and methods of Math are static. We can refer to
the constant p as Math.PI and the sine function as Math.sin(x), where
x is the method’s argument.

Example : To illustrate the properties and methods of the Math object.

<HTML>

<HEAD>

<TITLE>Math Object</TITLE>

</HEAD>

<BODY>

<SCRIPT type=”text/JavaScript”>

document.write(“Value of PI :”+Math.PI + “
”);

document.write(“Random value:”+Math.random()+”
”);

document.write(“Rounded value of 0.69 :”+ ↵

Math.round(0.69)+”
”);

document.write(“Value of 5 ² :”+ ↵

Properties Description

Math.PI Returns the value of p
Math.E Euler’s constant and the base of natural

logarithms.
Math.LN2 Natural logarithm of 2.
Math.LN10 Natural logarithm of 10, approximately 2.302.
SQRT1_2 Square root of ½.
SQRT2 Square root of 2.

Methods +Description

pow(x, p) Returns XP

abs(x) Returns absolute value of x.
exp(x) Returns ex

log(x) Returns the natural logarithm of x.
sqrt(x) Returns the square root of x.
random() Returns a random number between 0 and 1.
ceil(x) Returns the smallest integer greater than or equal

to x.
floor(x) Returns the largest integer less than or equal to

x.
min(x, y) Returns the lesser of x and y.
max(x, y) Returns the larger of x and y.
round(x) Rounds x up or down to the nearest integer.
sin(x) Returns the sin of x, where x is in radians.
cos(x) Returns the cosine of x, where x is in radians.
tan(x) Returns the tan of x, where x is in radians.

Client-Side Scripting Using JavaScript

289289289289289

Figure 10.8

10.7 EXPRESSIONS AND OPERATORS

An expression is a combination of operators operands that can be
evaluated. It may also include function calls which return values.

Examples

x = 7.5 // a numeric literal

“Hello India!” // a string literal

false // a Boolean literal

{feet:10, inches:5} // an object literal

[2,5,6,3,5,7] // an array literal

v= m + n; // the variable v

tot // the variable tot

10.7.1 ARITHMETIC OPERATORS

These are used to perform arithmetic/mathematical operations like
subtraction, division, multiplication etc. Arithmetic operators work on
one or more numerical values (either literals or variables) and return
a single numerical value. The basic arithmetic operators are:

+ (Addition) - (Subtraction)
* (Multiplication) / (Division)
% (Modulus) ++ (Increment by 1)
— (Decrement by 1)

Examples

var s = 10 + 20; // result: s=30

var h = 50 * 4; // result: h = 200

Math.pow(5,2) + “
”);

document.write(“Square root of 2 :”+Math.SQRT2);

</SCRIPT>

</BODY>

</HTML>

Computers and Communication Technology

290290290290290

var d = 100 / 4; // result: d = 25

var r = 72 % 14; // result: r=2

Increment and decrement operators

These operators are used for increasing or decreasing the value of a variable
by 1. Calculations performed using these operators are very fast.

Example

var a = 15;

a++; // result: a = 16

var b = 20;

b—; // result: b = 19

10.7.2 ASSIGNMENT OPERATORS

It assigns the value of its right operand to its left operand. This operator
is represented by equal sign(=).

Example

x = 100; // This statement assigns the value 100 to x.

JavaScript also supports shorthand operator for standard operations.
The shorthand operator with example :

Shorthand operator Example is equivalent to

+ = a + = b a = a + b

– = a – = b a = a – b

* = a * = b a = a * b

/ = a / = b a = a / b

% = a % = b a = a % b

10.7.3 RELATIONAL (COMPARISON) OPERATORS

Relational Operators are some symbols which return a Boolean value
true or false after evaluating the condition. For example x > y; returns
a value true is value of variable x is greater than variable y.

Basic JavaScript comparison operators are given in the table below :

Operator Description Example

= = is equal to 4 = = 8 returns false

! = is not equal to 4 ! = 8 returns true

> is greater than 8 > 4 returns true

< is less than 8 > 4 returns false

< = is less than or equal to 8 < = 4 returns false

> = is greater than or equal to 8 > = 4 returns true

Client-Side Scripting Using JavaScript

291291291291291

Relational operators are functional for strings as well. The
comparison takes place in alphabetical order. This alphabetical order
is based on ASCII number. For example :

Statement Output

“zero” < “one” // false

“Zero” < “one” // true

10 < 5 // false, numeric comparison.

“10” < “5” // true, string comparison.

“10” < 5 // false, numeric comparison;

“Ten” < 5 // Error occurs, “Ten” can not be

// converted into a number

10.7.4 LOGICAL OPERATORS

Logical operators are used for combining two or more conditions.
JavaScript has following three logical operators :

Operator Description with Example

&& (AND) returns true if both operands are true else it return
false.

| | (OR) returns false if both operands are false else it
returns true.

! (NOT) returns true if the operand is false and false if
operand is true.

10.7.5 CONCATENATION OPERATOR

The + operator concatenates two string operands. The + operator gives
priority to string operands over numeric operands It works from left to
right. The results depend on the order in which operations are performed.
For example :

Statement Output

“Good” + “Morning” “GoodMorning”
“5” + “10” “510”
“Lucky” + 7 “Lucky7”
4 + 7 + “Delhi” “11Delhi”
“Mumbai” + 0 +0+ 7 “Mumbai007”

10.7.6 SPECIAL OPERATORS

Conditional Operator (? :)

The conditional operator is a special JavaScript operator that takes
three operands. Hence, it is also called ternary operator. A conditional
operator assigns a value to a variable based on the condition.

Computers and Communication Technology

292292292292292

Syntax

var_name = (condition) ? v_1 : v_2

If (condition) is true, the value v_1 is assigned to the variable,
otherwise, it assigns the value v_2 to the variable.

For example

status = (age >= 18) ? “adult” : “minor”

This statement assigns the value “adult” to the variable status if
age is eighteen or more. Otherwise, it assigns the value “minor” to
status.

New

new operator is used to create an instance and allocate memory to a
user-defined or predefined object types.

Syntax

ObjectName = new objectType (param1 [,param2] ...[,paramN])

Example

d = new Date(); // date assigns to object d

r = new rectangle(4, 5, 7, 8);

Delete

The delete operator de-allocates (releases) the memory space that was
allocated using the new operator by deleting an object, an object’s
property or an element from an array.

The syntax is

delete object_name

delete object_name.property

delete array_name[index]

delete operator can be used to delete variables declared implicitly
but not those declared with the var statement. The delete operator
returns true if the operation is possible; it returns false if the operation
is not possible.

a=12

var j= 63

myobj=new Number()

myobj.h=55 // create property h

delete x /* returns true (x is declared implicitly,

without using var)*/

delete y /* returns false (y is declared

explicitly using var) */

delete Math.PI /* returns false (cannot delete predefined

properties)*/

delete myobj.h /* returns true (can delete user-defined

properties)*/

Client-Side Scripting Using JavaScript

293293293293293

delete myobj /* returns true (can delete if declared

implicitly) */

When we delete an array element, the array length will not be
affected. For example, if we delete a[3], then a[4] still remains a[4] and
a[3] will be undefined. When the delete operator removes an array
element, that element is no longer in the array.

this

JavaScript supports this operator. The word this refers to the current
object. It is like a pointer to the current object.

The syntax is

this[.propertyName]

Example

Use of this operator to validate the age. Here input is provided through
the text box.

<HTML>

<HEAD>

<SCRIPT LANGUAGE=”JavaScript” TYPE=”text/javascript”>

function validate(obj, min_age, max_age)

{

 if ((obj.value < min_age) || (obj.value > max_age))

 alert(“Invalid age for the Job!!!”);

}

</script>

</HEAD>

<BODY>

Enter the age (between 18 and 40):

<INPUT TYPE = “text” NAME = “age” SIZE = 2

onChange=”validate(this, 18, 40)”>

</BODY>

</HTML>

In this example we called validate() function by onChange event
handler. Here, this operator is used to pass current object (viz. text box).

Figure 10.9

Computers and Communication Technology

294294294294294

10.7.7 OPERATOR PRECEDENCE

Operators are evaluated in a predefined order of precedence. The
following table shows operators from highest priority to lowest priority :

Operator Description Priority

* Multiplication Highest
 / Division
% Modulus

+ Addition
– Subtraction

< Less than
<= Less than equal to
> Greater than
>= Greater than equal to

== Equality
!= Not equality

&& Logical AND

|| Logical OR

?: Conditional

=
+=
–= Assignment Operators
*=
/=
%=

, Comma Lowest

Table 10.1 : Operator Precedence

10.8 JAVASCRIPT POPUP BOXES (DIALOG BOXES)

In JavaScript, three kinds of popup boxes – Alert box, Confirm box, and
Prompt box can be created using three methods of window object.

10.8.1 ALERT BOX

Alert() method of window object creates a small dialog box with a
short text message and “OK” command button called alert box. Alert
box contains an icon indicating a warning.

Syntax

[window].alert(“Text to be displayed on the popup box”);

The word window is optional.

Client-Side Scripting Using JavaScript

295295295295295

Example

window.alert(“I am to alert you about ….”);

or

alert(“I am to alert you about ….”);

Output

An alert box is used if we want
to display some information to the
user. When an alert box appears,
the user needs to click “OK” button
to proceed.

10.8.2 CONFIRM BOX

Confirm box is used if we want the user to verify and confirm the
information. The user will have to click either “OK” or “Cancel” buttons.

Syntax

[window].confirm(“Text to be confirmed”);

Example

confirm(“Do you want to quit now?”);

Output

Confirm box returns a Boolean value.
If the user clicks on “OK”, it returns
true. If the user clicks on “Cancel”, it
returns false.

10.8.3 PROMPT BOX

Prompt box allows getting input from
the user. We can specify the default text for the text field. The
information submitted by the user from prompt() can be stored in
a variable.

Syntax

prompt(“Message” [, “default value in the text field”]);

Example

var name = prompt(“What’s your ↵

name? “, “Your name please…”);

Output

A prompt box returns input string value
when the user clicks “OK”. If the user
clicks “Cancel”, it returns null value.

Computers and Communication Technology

296296296296296

10.9. BLOCK STATEMENT

Two or more statements can be combined to form a single block
statement using a set of curly brackets.

The Syntax is

{
 statement_1
 statement_2
 .
 .
 statement_n
}
e.g. If (z > y)
{ x=10;
y=20; }

10.10 BRANCHING AND LOOPING STATEMENTS

JavaScript allows to select among alternative ways or to repeat
the execution of a statement or block of statements. JavaScript
supports some conditional statements for the branching. A
conditional statement is a statement that we can use to execute a
part of code based on a condition or to do something else if the
condition is not met.

Looping is repeating execution of a set of statements for a number
of times.

10.10.1 BRANCHING (CONDITIONAL) STATEMENTS

Branching With If Statements

An if statement is used to execute a statement or a block of statements
on based of logical expression (condition). There are three different
forms :

- if … statement (simple if statement).
- if … else statement.
- If .. else if .. else statement (else if ladder statement)

if … statement

The ‘if’ is the simplest decision making statement. This statement is
used to execute statement(s) only if a specified condition is true.

The Syntax is

if (condition)
{
.. statement(s) to be executed if (condition) is true…
}

Client-Side Scripting Using JavaScript

297297297297297

Statement(s) before

if statement

if

(Condition)

True
Statement(s)

False

Statement(s) next

to if statement

Figure 10.10 : Flowchart for if… statement

In the above flowchart, statement(s) is/are executed only when logical
expression is true. Otherwise, the statement following ‘if statement’
will be executed next.

Example : A JavaScript program that displays ‘Good Morning India!’ if
and only if time is less than 12 hours on web page otherwise page will
remain blank.

<HTML>

<HEAD>

<TITLE>if statement</TITLE>

</HEAD>

<BODY>

<script type = “text/javascript”>

var d = new Date();

var time = d.getHours(); // time stores hours

if (time < 12)

{

document.write(“Good Morning India!”);

}

</script>

Computers and Communication Technology

298298298298298

</BODY>

</HTML>

This HTML document displays the message “Good Morning India!”
if your system time is less then 12 Hrs. Other wise you will find the
page blank.

Output

if … else … statement

This statement is an extension of the simple if statement. It permits
one of two statement or group of statements depending upon the
logical test.

The Syntax is

if (condition)

{

True statement(s)…

}

else

{

False statement(s)…

}

If the logical expression (condition) is true, the true statement(s)
will be executed. Otherwise, the false statement(s) will be executed.

Client-Side Scripting Using JavaScript

299299299299299

Statement before

if statement

if

(Condition)

True
True Statement(s)

False

Statement next

to if statement

False Statement(s)

Figure 10.11: Flowchart for if … else … statement

Example : A JavaScript program that displays ‘Good Morning India!’ if
time is less than 12 hours otherwise it shows ‘Good Day India!’ on the
document.

<HTML>

<HEAD>

<TITLE>if else statement</TITLE>

</HEAD>

<BODY>

<script type = “text/JavaScript”>

var d = new Date();

var time = d.getHours();

if (time < 12)

{

document.write(“Good Morning India!”);

}

else

{

document.write(“Good Day India!”);

}

</SCRIPT>

Computers and Communication Technology

300300300300300

</BODY>

</HTML>

This HTML document displays the message “Good Morning India!”
if the system time is less then 12 hours. Other wise it display the
message “Good Day India!”.

Output

If...else if...else Statement

The if....else if...else statement is further an extension of the if… else…
statement. This statement is useful for selecting one of many sets of
statements to execute.

The Syntax is

if (condition1)

{

code to be executed if condition1 is true

}

else if (condition2)

{

code to be executed if condition2 is true

}

.

.

Client-Side Scripting Using JavaScript

301301301301301

else

{

code to be executed if any of the conditions is not true

}

Statement before

if else if statement

if

(Condition 1)

True

False

Statement-1

Statement next to

the if else if statement

if

(Condition 2)

else

Statement-2

Statement-3

False

True

Figure 10.12 : Flowchart for if … else if … else statement

Example : Write a program to check whether a number input through
prompt box is Zero, Odd or Even.

<HTML>

<HEAD>

<TITLE>Odd, Even or Zero</TITLE>

</HEAD>

<BODY>

<SCRIPT type = “text/JavaScript”>

var n = prompt(“Enter your number:”,”Type your number↵

here”);

Computers and Communication Technology

302302302302302

n = parseInt(n); //converts string into number

if (n == 0)

alert(“The number is zero!”);

else if (n%2)

alert(“The number is odd!”);

else

alert(“The number is

even!”);

</SCRIPT>

</BODY>

</HTML>

Output

Selection with switch statement

A switch statement is used to execute
different statement based on different
conditions. It provides a better
alternative than a long series of if… else
if … statements.

The Syntax is

switch (expression)

{
 case label1 : //executes when value
of exp. evaluates to label

statements;

break;

case label2 :

statements;

break;

...

default : statements; //executes when non of the above labels

//matches the result of expression

}

Program 10.5 : To compute the day of week (in words) while you input
the date within prompt dialog box.

Figure 10.13 : Output

<HTML>

<HEAD>

<TITLE>Switch statement</TITLE>

</HEAD>

<BODY>

Client-Side Scripting Using JavaScript

303303303303303

The value of this expression is then compared with the values for
each case in the switch structure. If there is a match, the block of code
associated with that case is executed. If no case is matched, the
statement in default will be executed. Use break to prevent the code
from running into the next case automatically. There is no need to use
break within the default case.

When you press OK button, we will get the output (Figure 10.14) :

10.10.2 LOOP STATEMENTS

Loop statements are the primary mechanism for telling a JavaScript
interpreter to execute statements again and again until a specified

<script type=”text/JavaScript”>

// Enter date of birth to know the day of week on that day.

var d=new Date(prompt(“Enter your Date of Birth

(e.g. November 17, 2002)”, “Month DD, YYYY”))

dy=d.getDay()

switch (dy)

{

case 0:

document.write(“It was Sunday on that day.”)

break

case 1:

document.write(“It was Monday on that day.”)

break

case 2:

document.write(“It was Tuesday on that day.”)

break

case 3:

document.write(“It was Wednesday on that day.”)

break

case 4:

document.write(“It was Thursday on that day.”)

break

case 5:

document.write(“It was Friday on that day.”)

break

case 6:

document.write(“It was Saturday on that day.”)

break

default:

document.write(“Please input a

valid Date in?

prescribed format !!!”)

}

</script>

</BODY>

</HTML>

Computers and Communication Technology

304304304304304

Figure 10.14 : Output

condition is met. JavaScript supports following looping statements :

• for
• do … while
• while loop

Most loops have a counter variable which is initialised before the
loop starts and then it is tested as part of the condition (expression)
evaluated before every iteration of the loop. Finally, the counter variable
is incremented or updated at the end of the loop body just before the
condition is evaluated again.

For

The for loop consists of three optional expressions separated by
semicolon, followed by a block of statements executed in the loop. Loop
statements executed repeatedly again and again until the condition is
false. The for loop is used when we know in advance how many times
the script code should run.

The Syntax is

for([initial-expression]; [condition]; [increment-expression])

{

statements

}

Client-Side Scripting Using JavaScript

305305305305305

Parameters

Initial-expression – used to initialise a counter variable.

Condition – If condition evaluates to true, the statements are
executed.

Incr.-expression – to increment the counter variable.

Examples

The following for statement declares variable i and initialising it to 1.
It checks that i is less than 20, performs the two succeeding statements,
and increments i by 2 after each pass through the loop.

// for loop to display odd numbers between 1 to 20

for (var i = 1; i < 20; i+=2)

{

document.write(i);

document.write(“
”);

}

Program 10.6 : A JavaScript program to generate the table of number
7 using for loop statement.

<HTML>

<HEAD>

<TITLE> Table of 7 </title>

</HEAD>

<BODY>

<SCRIPT language=”JavaScript” type=”text/JavaScript”>

document.write(“<H2> Table of number 7 </H2>”);

for(i = 1; i <= 10; i++)

{ document.write(7*i);

document.write(“
”);

}

</SCRIPT>

</BODY>

</HTML>

Computers and Communication Technology

306306306306306

While

The while loop statement is simpler than the for loop. It consists of a
condition and block statement. The condition is evaluated before each
pass through the loop. If the condition is true then it executes block
statement.

The Syntax is

while (condition)

{

statements

}

Example : The following while loop gives same output as for loop in
previous example.

// While loop to display Odd numbers between 1 to 20

var i = 1; // Initialization of counter variable

while (i < 20) // Condition

{

document.write(i);

document.write(“
”);

i++; // Updation

}

In while loop, we have to maintain a counter variable which controls
the execution of statements in the loop.

Program 10.7 : Write a JavaScript program to generate first 10
Fibonacci numbers.

<HTML>

<HEAD>

<TITLE>Fibonacci Series</TITLE>

</HEAD>

<BODY>

<SCRIPT LANGUAGE=”JavaScript” TYPE=”text/JavaScript”>

// Program to print the Fibonacci series upto 10 numbers

document.write(“Fibonacci Series... upto 10 numbers
”.fontsize(4));

//.fontsize to increase the font size of the string

i=0;

document.write(i + “ “);

j=1;

document.writeln(j + “ “);

var x = 3;

while (x <= 10)

{

t = i + j;

document.write(t + “ “);

i = j;

j = t;

Client-Side Scripting Using JavaScript

307307307307307

Do...While

The do...while loop is much like a while loop. It will repeat the loop
until the specified condition is false. This loop will always be executed
at least once, even if the condition is false, because the block of
statements is executed before the condition is tested. In this loop
statement, curly braces are optional.

The Syntax is

do

{

statements

}

while (condition);

Example : The following do…while loop gives same output as while loop
in previous example.

// do…while loop to display Odd numbers between 1 to 20

var i = 1; // Initialization of counter variable

do

{

document.write(i);

document.write(“
”);

i++; // Updation

}

while (i < 20); // Condition

Condition lies between the parentheses after the block of statements
with while keyword.

10.10.3 LABEL

A label is an identifier followed by a colon that can be helpful in directing
the flow of program.

x++;

}

</SCRIPT>

</BODY>

</HTML>

Computers and Communication Technology

308308308308308

The Syntax is

label: statement

The value of label may be any JavaScript identifier. The statement
that you identify with a label may be any statement.

Example

In this example, the label “whileloop” identifies a while loop.

x=1;

whileloop: // Label

while(x<=10)

{

document.write(x);

x++;

}

10.10.4 BREAK

Break statement is used to exit from the innermost loop, switch
statement, or from the statement named by label. It terminates the
current loop and transfers control to the statement following the
terminated loop.

The Syntax is

break [label]

The break statement includes an optional label that allows the
control to exit out of a labeled statement.

Example : The following program segment has a break statement that
terminates the while loop when it is equal to 3.

var i = 0;

while (i < 6)

{

if (i == 3)

break; //the control moves out of loop in first iteration

i++;

}

document.write(i);

10.10.5 CONTINUE

The continue statement skips the statement following it and executes
the loop with next iteration. It is used along with an if statement inside
while, do-while, for, or label statements.

Client-Side Scripting Using JavaScript

309309309309309

The Syntax is

continue [label]

The continue statement does not terminate the loop. Instead, in a
while loop, it jumps back to the condition and in a for loop, it jumps to
the update expression. The continue statement can include an optional
label that allows the program to terminate a labeled statement and
continue to the specified labeled statement.

Example

A program to input 50 elements using prompt() and then compute sum
of marks more than 40 using continue statement.

var marks = new Array();

var i = 0, sum=0;

while (i < 50)

{

i++;

// parseInt converts string value into a number.

marks[i]=parseInt(prompt(“Enter marks”));

if (marks[i] <= 40) // when the condition is true then

continue; // control goes to while condition expression.

sum = sum + marks[i];

}

document.write(sum+”\n”);

10.11 OBJECT HANDLING STATEMENTS

JavaScript provides some special statements to handle the objects.
Two type of statements are for...in and with

10.11.1 FOR…IN

The for…in statement iterates a specified variable over all the properties
of an object.

The Syntax is

for (<variable> in <object>)

{

statements

}

The body of the for…in statement is executed once for each property
of an object. Before the loop statement is executed, the name of one
of the object’s property is assigned to variable, as a string. We can
use this variable to look up the value of the object’s property with
the [] operator.

Example : To print the name and value of each property of a Book object.

Computers and Communication Technology

310310310310310

<HTML>

<HEAD>

<TITLE> for... in Example </TITLE>

</HEAD>

<BODY>

<SCRIPT LANGUAGE=”JavaScript” TYPE=”text/javascript”>

var Book = new Object(); // Object creation

// Properties and values of Book

Book = { Title:”The Discovery of India”,↵

Author:”Jawahar Lal Nehru”, ↵

Publisher: “Penguin Books”, ↵

Price:Rs 399//- ↵

};

var result = “”;

// Name of distinct property of Book assign to b in each loop

execution

for (var b in Book)

{

// Book[b] is used to get the values.

result += “Book.” + b + “ = “ + Book[b] + “
”;

}

// To print names and values of each property of Book object.

document.write(result);

</SCRIPT>

</BODY>

</HTML>

Output

Figure 10.17 : Use of for…in statement

Client-Side Scripting Using JavaScript

311311311311311

10.11.2 WITH

With statement saves a lot of typing when properties of same object
have to be accessed. For example, it is common to work with deeply
nested object hierarchies. Sometimes we have to type expressions like
this one to access elements of a HTML form :

Frames[1].document.forms[0].fname.value

Examples

The following script illustrates the use of with statement. Here two
object Math and document are default objects. The statements following
the with statement along with Math object refer to the PI property and
the cos and sin methods, without specifying an object. Same way the
statement following the with statement along with document object
refer to the write method, without specifying the object. JavaScript
assumes the Math and document object for these references.

var area, circumference

var r=10

with (Math)

{

 area = PI * r * r

 circumference = 2*PI*r

}

with (document)

{

write(“Area of the Circle: “+area+”
”);

write(“Circumference of the Circle: “+circumference);

}

Output

Figure 10.18 : Use of with statement

Computers and Communication Technology

312312312312312

10.12 JAVASCRIPT FUNCTIONS

Function is a named block of statements which can be executed again
and again simply by writing its name and can return some value. It is
useful in making a program modular and understandable.

10.12.1 DEFINING A FUNCTION

Function can be defined using the following syntax:

The Syntax is

function <function-name>([<parameter list>])

{

… body of the function ..

}

The function definition begins with keyword function, followed by
function’s name and optional parameter-list within parenthesis.. Braces
are used ({ and }) to enclose all of the statement in a function. Let’s an
example of function definition.

function Welcome()

{

alert(“Welcome to NCERT “);

}

These statements define a function Welcome that displays an alert
message to the user.

10.12.2 USING PARAMETERS WITH FUNCTION

The arguments received by the function in a list of corresponding values
are called parameters. These values can be assigned to local variables
within the function. Let’s try an example of function using parameter :

function Welcome(name)

{

alert(“Welcome to NCERT , “ + name);

}

We have learnt how to create simple functions. The best place for a
function definition is within the <HEAD> section of the HTML document,
because the statements in this section are executed first, this ensures
that function is defined before it is used.

Example : Using a function within the HEAD section of a HTML
document.

<HTML>

<HEAD>

<TITLE> Define a Function </title>

Client-Side Scripting Using JavaScript

313313313313313

<script language=”JavaScript” type=”text/JavaScript”>

function Welcome(name)

{

alert(“Welcome to NCERT, “ + name+”!”);

}

</script>

</HEAD>

<BODY>

This is the body of a HTML document. You will observe that I

have used script code in small case and other HTML tags in

Capital to enhance the readability of JavaScript Code.

</BODY>

</HTML>

10.12.3 CALLING THE FUNCTION

A function can be called by writing the name of the function along with
the list of arguments. A function call can also be used in an event
handler code also.

The Syntax is

<function name> ([<parameter list>])

Example

Welcome(“MANYA”);

This tells the JavaScript interpreter to transfer control to the first
statement of function ‘Welcome’. It also passes the parameter “MANYA”
to the function. The value will be assigned to the name variable inside
the function.

Program 10.8 : A HTML document that illustrates function definition
and calling of Welcome() function.

<HTML>

<HEAD>

<TITLE> Defining and calling a Function </title>

<script language=”JavaScript” type=”text/JavaScript”>

// function definition

function Welcome(name)

{

alert(“Welcome, “ + name);

}

</script>

</HEAD>

<BODY>

<H1> A Function Example</H1>

This example illustrates use of function and popup boxes.

<script language=”JavaScript” type=”text/JavaScript”>

var nm = prompt(“What’s your name? “, “Your name please…”);

// Calling of function Welcome().

Computers and Communication Technology

314314314314314

Welcome(nm);

</script>

</BODY>

</HTML>

10.12.4 CALLING A FUNCTION FROM AN EVENT

Once a function is defined, it may be used with events like on Click
event. Here, the function simply becomes another JavaScript command.
For example:

<INPUT type = “button”

 value = “Calculate”

 onClick = calc() >

When the user clicks the button, the program automatically calls
the calc() function.

10.12.5 RETURNING VALUE FROM FUNCTION

The return statement is used to return a value from a function. A
variable using assignment operator can hold the returned value.

For example, a program to calculate simple interest using function is :

<HTML>

Client-Side Scripting Using JavaScript

315315315315315

<HEAD>

<TITLE>A Simple JavaScript Function returning Value </TITLE>

<script language=”JavaScript” type=”text/JavaScript”>

function si(p, r, t)

{ var s = (p * r * t)/ 100

return s; // function returning value s

}

</script>

</HEAD>

<BODY>

<script language=”JavaScript” type=”text/JavaScript”>

var result = si(1000, 5, 7) // returned value assigned

to result

document.write (“Result = “ + result);

</script>

</BODY>

</HTML>

Output

Figure 10.20 : Output

10.12.6 NESTED FUNCTION

A function may be nested inside another function definition. They may
not be defined within statement blocks, such as the body of an if
statement or while loop etc.

Suppose we want to calculate the area of the circle, which is equal
to 3.14 x r2 . The nested functions would be written as follows:

function Area(r)

{

function Square(x)

{

Computers and Communication Technology

316316316316316

return x*x;

}

return 3.14*Square(r);

}

In this script, Square() function is nested inside the Area() function.

Summary

• JavaScript is a platform independent object-based scripting language.

• Client-side JavaScript is the name given to JavaScript code that is executed by a web
browser on client machine.

• JavaScript is a case-sensitive language and all the statements are written in lower case.

• JavaScript allows omitting semicolon when statements are placed in separate lines. If
we combine statements into a single line, we must use semicolon to separate them.

• document.write is a standard JavaScript command for producing output to a document
window.

• Literals refer to the constant values that are used directly in a program code.

• A variable is a container of values or string. The values stored in a variable can be
accessed using the variable name.

• JavaScript supports three primitive data types: number, string and boolean. JavaScript
allows two composite data types: objects and arrays.

• Expression is combination of operators and literals or variable names.

abstract boolean break byte

case catch char class

const continue debugger default

delete do double else

enum export extends false

final finally float for

function goto if implements

import in instanceof int

interface long native new

null package private protected

public return short static

super switch synchronized this

throw throws transient true

try typeof var void

volatile while with

RESERVED/KEY WORDS IN JAVASCRIPT

Client-Side Scripting Using JavaScript

317317317317317

• The increment and decrement operators act on only one operand. These are used for
increasing or decreasing the value of a variable by 1.

• An assignment is a basic operator, which assigns the value of its right operand to its left
operand. This operator is represented by an equal sign(=).

• Relational operators are used to compare the values of operands and it returns Boolean
value based on the condition.

• JavaScript has three logical operators: && (AND) , || (OR) , and ! - (NOT)

• The + operator is also used to concatenate two string operands. It gives priority to string
operands over numeric operands.

• Conditional operator (? :) is also called ternary operator.

• new operator is used to create an instance of a user-defined object type or one of the
predefined object types.

• The delete operator is used to de-allocate the memory space.

• The in operator returns true, if the specified property/index exists in the specified object.

• Alert box is a dialog box with a text message and “OK” button.

• Confirm box is a box meant to verify or accept some information, the user have to click
either “OK” or “Cancel” buttons to proceed.

• Prompt box allows us to gather user’s input with the help of text field.

• Block statement combines two or more statements into a one statement. Block statements
are commonly used with conditional and looping statements.

• An if statement is used to execute a statement or a block of statements on the basis of
condition.

• A switch statement in JavaScript is used to perform different actions based on different
conditions. It can be a replacement for multiple if… else if… statement.

• Loop statements tell JavaScript interpreter to execute same statements again and again
until a specified condition is met.

• The for loop consists of three optional expressions. It executes block statement repeatedly
again and again until the condition is false.

• The while loop statement is simpler than for loop. It repeats block statement again and
again until the specified condition is false.

• Unlike while loop, do…while loop always executes a block of code at least once.

• Instead of exiting a loop, continue statement skips the statement following it and restarts
a loop in a new iteration.

• The for…in statement iterates a specified variable over all the properties of an object.

• The with statement establishes the default object for a set of statements.

• Function is a named unit for the group of JavaScript statements. If a user needs to send
values to a function, the values are enclosed in the parentheses after the function name
and sent as a comma-separated list of arguments when function is called.

• The return statement is used to return a value from a function. A variable using assignment
operator can hold the returned value.

• A function may be nested inside another function definition.

Computers and Communication Technology

318318318318318

EXERCISES

SHORT ANSWER TYPE QUESTIONS

1. Is it possible to write programs for standalone applications in JavaScript?

2. Where should we use semicolon in the statements? Is it mandatory?

3. Differentiate between client-side and server-side JavaScript?

4. What is the purpose of document.write() in JavaScript code?

5. What are the invalid variable names in following? Explain with reasons.
My_Name, number10, $100, father’s name, marks%

6. What are reserved words? Can we use reserved words as identifiers?

7. What do you mean by literals?

8. What are the data types in JavaScript?

9. What is the purpose of var statement?

10. Why strings are enclosed within the single or double quotes?

11. Write JavaScript code that displays the following:

He said, “Mahatma Gandhi was a non-violent soldier of India.”

12. Can we use different data type values in a single array?

13. Write a statement to assign numeric values 65, 75, 80, 87, 90 to an array
named stumarks.

14. Are the null and zero have similar values?

15. What are operators? What is the significance of an operator?

16. What type of a value a prompt()method returns?

17. Write the equivalent JavaScript statements for the following:
(a) Area = 3.14r2

(b) KE = ½ mv2

18. What will be the value of variable r?
var r = 45 % 7;

19. What will be the value of variable r?
var a = 4;
var b = 7;
var c = “NCERT”;
r = a + b + c;

20. The ‘==’ operator is not the same as the assignment operator ‘=’. (True or False).

21. Find the value of variable total?
total = (360 * 5) + ((40 / 8) - 9) - ((14 * 6) / 2);

22. What is the value of variable b?
a = 25;
b = (++a) + 7;

Client-Side Scripting Using JavaScript

319319319319319

LONG ANSWER TYPE QUESTIONS

1. Write a JavaScript program to find out whether the given year is leap or not.
Use prompt box for input the year.

2. Write a JavaScript program which welcomes the user by addressing
Good Morning, <User_name> during hour in time is 4 to 11
Good Noon, <User_name> when hour value is 12.
Good Afternoon, <User_name> when hour value is 13 to 16
Good Evening, <User_name> when hour value is 17 to 23
Good Midnight, <User_name> when hour value is 24 or 1 to 3.

3. Write a program to find the greatest number among three given numbers?

4. What happens when the following JavaScript code is executed?
var get_res = confirm(“Did you like this chapter?”);
if (get_res == true)
alert(“Okay! Let’s go to the next!”);

5. What will be the output if variable marks is 75?
if (marks >= 80)

{
alert(“Excellent!”);

}
else if (marks >= 60 && marks < 80)

{
alert(“Good!”);

}
else if (marks > 50 && marks < 60)

{
alert(“Average!”);

}
else

{
alert(“Improve yourself !”);

}

6. Write a program using switch statement to print word equivalent of a number
from 0 to 9, e.g. 3 should be displayed as “Three”.

7. Write a statement that displays an alert box which looks like this :

8. Write a program to print the following
output using for loops.
1
22
333
4444

9. How many times will the following for loop
be executed?
for (a = 0; a <= 10; a = a + 2)
{
... statements ...

}

10. What will be the final value of the variable sum?
var sum = 0;

function add()

Computers and Communication Technology

320320320320320

{

var sum = sum + 20;

}

add();

sum = sum + 1;

11. What will be displayed in the alert box at the end of script execution?
var y = 0;

for (x = 0; x <= 5; x++, y = y + 50)

{

y = y + 10;

}

alert(“The value of y is :” + y);

12. Write a program to calculate the average of 5 numbers entered by the visitor
through a prompt?

13. If the value of variable num is 30, how many times will the following while loop
be executed?
while (num <= 30)

{

... statements ...

num = num + 3;

}

14. Write a program to find the reverse of a number (i.e. reverse of 123 is 321)

15. Write a program to convert a decimal number into a binary number.

16. Write a program to check whether a number is palindrome or not. A number is
palindrome if it is equal to its reverse number.

17. Using continue display the odd numbers between 1 to 20.

18. Write a program to find sum of digits of a number, e.g. 453 results 4+5+3=12.

19. Write a program to generate prime numbers up to a specific limit.

20. What will be the output of the following JavaScript code?

for(i=1; i<=5; i++)

{

document.write(“
”)

for(j=1; j<=i; j++)

document.write(“*”)

}

21. Identify the errors in the following code segment:
function 3_alert_box

{

alert(“Hi!, I am from a function.’);

}

22. Write a program using while statement to find out the sum of first n numbers.

23. Identify the errors in the following code segment:
fun_alert_box

{

Client-Side Scripting Using JavaScript

321321321321321

document.write(“Hi!, I am from a function);+1
}

24. What do you understand by nested function?

MULTIPLE CHOICE QUESTIONS

1. The file extension for external JavaScript file is —
(i) .jscript
(ii) .js
(iii) .jav
(iv) .java

2. Why comments are used within JavaScript programs?
(i) To tell the browser there is HTML in our JavaScript code.
(ii) Because HTML does not have its own command for comments.
(iii) To explain what a script does.
(iv) None of the above.

3. The original name of JavaScript was —
(i) JavaScript
(ii) LiveScript
(iii) WireScript
(iv) ECMAScript

4. Which of following is not a valid expression?
(i) 7.5
(ii) b + a = c
(iii) {feet:10, inches:5}
(iv) [2,3,6,9,5,7]

5. What will be the value of res in the following expression?
var res = “70” + 25
(i) 95
(ii) 7025
(iii) 25
(iv) No output due to error.

6. What will be the value returned by expression “India” < “bharat”?
(i) 0
(ii) true
(iii) false
(iv) Invalid expression

7. delete operator is used to delete the
(i) .js files.
(ii) cookies.
(iii) created objects.
(iv) functions.

8. To which object does the confirm() method belongs to?
(i) document
(ii) window
(iii) frame
(iv) date

9. Which of the following statement is used to repeat execution of block of the
statements?
(i) if...else...
(ii) continue

Computers and Communication Technology

322322322322322

References

JavaScript – The definitive Guide - David Flanagan, O’REILLY

SAMS Teach Yourself JavaScript in 24 hours – Michael Moncur, Sams Publishing

JavaScript – A Beginner’s Guide – John Pollock, McGraw-Hill.

http://www.webreference.com/programming/javascript

http:// www.webdevelopersnotes.com/tutorials/javascript

http://www.javascriptkit.com

http://www.w3schools.com/js

http://sun.com

http://www.mozilla.org

(iii) while
(iv) switch

10. What will be value of sum after execution of the statement?
for(i=1, sum=0; i<=5; i++) sum+=i;
(i) 13
(ii) 15
(iii) 25
(iv) Error in statement.

11. Which of the loop executes a block of code at least once?
(i) while
(ii) for
(iii) do...while
(iv) for/in

12. Which of the following loop statement is used to iterate a specified variable
over all the properties of an object?
(i) for
(ii) do…while
(iii) for/in
(iv) none of these

Activities

• Write an HTML document using JavaScript code, which displays your name, class and
name of the school.

• Write an HTML document using JavaScript to change background’s colour in your web
page randomly. (Hint: use document.bgcolor property and Math.random() function.)

• Write a program to check whether the user is eligible to cast the vote. The user must
check following two conditions for casting the vote:
(a) the age should be equal to or greater than 18 years and
(b) the nationality should be Indian.

• Write a simple Quiz program that asks the user 5 questions. Alert about answers of the
questions and give the user a score at the end of the Quiz.

• Write an HTML document using JavaScript code to validate the form in your website.

