Class 6 - Mathematics
Chapter - Triangles and its Properties : Exercise 6.3
Top Block 1
Question: 1.Find the value of unknown 𝓍 in the following diagrams:
Answer :
(i) In ΔABC,
∠BAC + ∠ACB + ∠ABC = 180o [By angle sum property of a triangle]
⇒ 𝓍 + 50o + 60o = 180o
⇒ 𝓍 + 110o = 180o
⇒ 𝓍 = 180o – 110o = 70o
(ii) In ΔPQR,
∠RPQ + ∠PQR + ∠RPQ = 180o [By angle sum property of a triangle]
⇒ 90o + 30o + 𝓍 = 180o
⇒ 𝓍 + 120o = 180o
⇒ 𝓍 = 180o – 120o = 60o
(iii) In ΔXYZ,
∠ZXY + ∠ XYZ + ∠YZX = 180o [By angle sum property of a triangle]
⇒ 30o + 110o + 𝓍 = 180o
⇒ 𝓍 + 140o = 180o
⇒ 𝓍 = 180o – 140o = 40o
(iv) In the given isosceles triangle,
𝓍 + 𝓍 + 50o = 180o [By angle sum property of a triangle]
⇒ 2𝓍 + 50o = 180o
⇒ 2𝓍 = 180o – 50o
⇒ 2𝓍 = 130o
⇒ 𝓍 = 130o2 = 65o
(v) In the given equilateral triangle,
𝓍 + 𝓍 + 𝓍 = 180o [By angle sum property of a triangle]
⇒ 3𝓍 = 180o
⇒ 𝓍 = 180o3 = 60o
(vi) In the given right angled triangle,
𝓍 + 2𝓍 + 90o = 180o [By angle sum property of a triangle]
⇒ 3𝓍 + 90o = 180o
⇒ 3𝓍 = 180o – 90o
⇒ 3𝓍 = 90o
⇒ 𝓍 = 90o⁄3 = 30o
Question: 2.Find the values of the unknowns 𝓍 and 𝓎 in the following diagrams:
Mddle block 1
Answer :
(i) 50o + 𝓍 = 120o [Exterior angle property of a Δ ]
⇒ 𝓍 = 120o– 50o= 70o
Now, 50o+ 𝓍 + 𝓎 = 180o [Angle sum property of a Δ ]
⇒ 50o + 70o + 𝓎 = 180o
⇒ 120o + 𝓎 = 180o
⇒ 𝓎 = 180o – 120o = 60o
(ii) 𝓎 = 80o ……….(i) [Vertically opposite angle]
Now, 50o + 𝓍 + 𝓎 = 180o [Angle sum property of a Δ ]
⇒ 50o + 80o + 𝓎 = 180o [From eq. (i)]
⇒ 130o + 𝓎 = 180o
⇒ 𝓎 = 180o – 130o = 50o
(iii) 50o + 60o = 𝓍 [E𝓍terior angle property of a Δ ]
⇒ 𝓍 = 110o
Now 50o + 60o + 𝓎 = 180o [Angle sum property of a Δ ]
⇒ 110o + 𝓎 = 180o
⇒ 𝓎 = 180o – 110o
⇒ 𝓎 = 70o
(iv) 𝓍 = 60o ……….(i) [Vertically opposite angle]
Now, 30o + 𝓍 + 𝓎 = 180o [Angle sum property of a Δ ]
⇒ 50o + 60o + 𝓎 = 180o [From eq. (i)]
⇒ 90o + 𝓎 = 180o
⇒ 𝓎 = 180o – 90o = 90o
(v) 𝓎 = 90o ……….(i) [Vertically opposite angle]
Now, 𝓎 + 𝓍 + 𝓍 = 180o [Angle sum property of a Δ ]
⇒ 90o + 2𝓍 = 180o [From eq. (i)]
⇒ 2𝓍 = 180o – 90o
⇒ 2𝓍 = 90o
⇒ 𝓍 = 90o2 = 45o
(vi) 𝓍 = 𝓎 ……….(i) [Vertically opposite angle]
Now, 𝓍 + 𝓍 + 𝓎 = 180o [Angle sum property of a Δ ]
⇒ 2𝓍 + 𝓍 = 180o [From eq. (i)]
⇒ 3𝓍 = 180o
⇒ 𝓍 = 180o3 = 60o