NCERT Solutions Class 10 Mathematics Introduction To Trigonometry Exercise 8.4

Class 10 - Mathematics
Introduction To Trigonometry - Exercise 8.4

NCERT Solutions Class 10 Mathematics Textbook
Top Block 1

Exercise 8.4


Question : 1:Express the trigonometric ratios sin A, sec A and tan A in terms of cot A.

Answer :

(i) sin A = √(sin2 A)
               = √(1/coses2 A)     
               = √{1/(1 + cot2 A)}                   [coses2 A = 1 + cot2 A]

(ii) sec A = √(sec2 A)     
                = √(1 + tan2 A)                        [sec2 A = 1 + tan2 A]    
                = √(1 + 1/cot2 A)
                = √{(1 + cot2 A)/ cot2 A}
                = √{(1 + cot2 A)/ cot A        

(iii) tan A = 1/cot A


Question : 2:Write all the other trigonometric ratios of ∠ A in terms of sec A.
(i) sin A = √(sin2 A)
(ii) cos A = 1/sec A

(iii) tan A = √(tan2 A)
(iv) cot A = √(cot2 A)
(v) cosec A = √(cosec2 A)

Answer :

(i) sin A = √(sin2 A)
              = √(1 – cos2 A)
              = √(1 – 1/sec2 A)
              = √{( sec2 A – 1)/sec2 A}
              = √( sec2 A – 1)/sec A

(ii) cos A = 1/sec A

(iii) tan A = √(tan2 A)
              = √(sec2 A – 1)

(iv) cot A = √(cot2 A)
              = √(1/tan2 A)
              = √{1/(sec2 A – 1)}
              = 1/√ (sec2 A – 1)

(v) cosec A = √(cosec2 A)
                    = √(1 + cot2 A)
                    = √(1 + 1/tan2 A)
                    = √{(1 + 1/(sec2 A – 1)}
                    = √{(sec2 A – 1 + 1)/(sec2 A – 1)}
                    = √{sec2 A/(sec2 A – 1)}
                    = sec A/√(sec2 A – 1)  


Question : 3:Evaluate :
(i) (sin2 63o + sin2 27o)/(cos2 17o + cos2 73o)
(ii) sin 25o cos 65o + cos 25o sin 65o

Answer :

(i) (sin2 63o + sin2 27o)/(cos2 17o + cos2 73o)
= {sin2 63o + cos2 (90 – 27o)}/{cos2 17o + sin2 (90 – 73o)}          
    [sin θ = cos(90o – θ) and cos θ = sin(90o – θ)]
= (sin2 63o + cos2 63o)/(cos2 17o + sin2 17o)
= 1
(ii) sin 25o cos 65o + cos 25o sin 65o
= cos(90 – 25o)cos 65o + sin(90 – 25o)sin 65o
= cos 65o cos 65o + sin 65o sin 650                  [sin θ = cos(90o – θ) and cos θ = sin(90o – θ)]
= cos2 65o + sin2 65o
= 1                                       [sin2 θ + cos2 θ = 1]


Question : 4 :
Choose the correct option. Justify your choice.
(i) 9 sec2 A – 9 tan2  A =
(A) 1                      (B) 9                    (C) 8                                  (D) 0
(ii) (1 + tan θ + sec θ) (1 + cot θ – cosec θ) =
(A) 0                      (B) 1                    (C) 2                                  (D) -1
(iii) (sec A + tan A) (1 – sin A) =
(A) sec A               (B) sin A              (C) cosec A                      (D) cos A
(iv) (1 + tan2 A)/(1 + cot2 A) =
(A) sec2 A             (B) –1                  (C) cot2A                        (D) tan2 A

Answer :

(i) 9 sec2 A – 9 tan2 A =
Given, 9 sec2 A – 9 tan2 A
= 9(sec2 A – tan2 A)
= 9*1                      {since sec2 A – tan2 A = 1}
= 9
Hence, option (B) is the correct answer.

(ii) (1 + tan θ + sec θ) (1 + cot θ – cosec θ) =
= 1 + cot θ – cosec θ + tan θ + tan θ cot θ – tan θ cosec θ + sec θ + sec θ cot θ – sec θ cosec θ
= 1 + cos θ/sin θ – 1/sin θ + sin θ/cos θ + 1 – sin θ/cos θ * 1/sin θ + 1/cos θ
+ 1/cos θ * cos θ/sin θ – 1/cos θ * 1/sin θ                  [since tan θ cot θ = 1]
= 2 + cos θ/sin θ – 1/sin θ + sin θ/cos θ – 1/cos θ + 1/cos θ + 1/sin θ – 1/(cos θ * sin θ)
= 2 + cos θ/sin θ + sin θ/cos θ – 1/(cos θ * sin θ)
= 2 + (cos2 θ + sin2 θ – 1)/ (cos θ * sin θ)
= 2 + (1 – 1)/ (cos θ * sin θ)                           [sin2 θ + cos2 θ = 1]
= 2 + 0
= 2
Hence, option (C) is the correct answer.

(iii) (sec A + tan A) (1 – sin A) = (1/cos A + sin A/cos A) (1 – sin A)
                                                    = {(1 + sin A)/cos A}(1 – sin A)
                                                    = (1 – sin2 A)/cos A
                                                    = cos2 A/cos A                      [sin2 θ + cos2 θ = 1]
                                                    = cos A
Hence, option (D) is the correct answer.   

(iv) (1 + tan2 A)/(1 + cot2 A) = sec2 A/cosec2 A
[sec2 A = 1 + cot2 A and cosec2 A = 1 + tan2 A]
                                                 = (1/cos2 A)/(1/sin2 A)
                                                 = sin2 A/ cos2 A
                                                 = tan2 A
Hence, option (D) is the correct answer.   
 


Question : 5:Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
(i) (cosec θ – cot θ)2 = (1 – cos θ)/(1 + cos θ)        (ii) cos A/(1 + sin A) + (1 + sin A)/cos A = 2 sec A
(iii) tan θ/(1 – cot θ) + cot θ/(1 – tan θ) = 1 + sec θ + cosec θ
[Hint : Write the expression in terms of sin θ and cos θ]
(iv) (1 + sec A)/sec A = sin2 A/(1 – cos A)
[Hint : Simplify LHS and RHS separately]
(v) (cos A – sin A + 1)/ (cos A + sin A – 1) = cosec A, using the identity cosec2 A = 1 + cot2 A.
(vi) √{(1 + sin A)/(1 – sin A)} = sec A + tan A
(vii) (sin θ – 2 sin3 θ)/(2cos3 θ – cos θ) = tan θ
(viii) (sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A
(ix) (cosec A – sin A)(sec A – cos A) = 1/(tan A + cot A)
[Hint : Simplify LHS and RHS separately]
(x) (1 + tan2 A)/(1 + cot2 A) = (1 – tan2 A)/(1 – cot2 A) = tan2 A

Answer :

(i) LHS:
(cosec θ – cot θ)2 = (1/sin θ – cos θ/sin θ)2      
                                = {(1 – cos θ)/sin θ}2
                                = (1 – cos θ)2/sin2 θ    
                                = (1 – cos θ)2/(1 – cos2 θ)                           [sin2 θ + cos2 θ = 1]
                                = (1 – cos θ)2/{(1 – cos θ) (1 + cos θ)}      [a2 – b2 = (a – b)(a + b)]
                                = (1 – cos θ)/{(1 + cos θ) 
                                = RHS

(ii) LHS:
cos A/(1 + sin A) + (1 + sin A)/cos A = {cos2 A + (1 + sin A)2}/{(1 + sin A) * cos A}
                                                               = {cos2 A + 1 + sin2 A + 2sin A}/{(1 + sin A) * cos A}     
                                                              = {1 + 1 + 2sin A}/{(1 + sin A) * cos A}       [sin2 θ + cos2 θ = 1]
                                                              = {2 + 2sin A}/{(1 + sin A) * cos A}
                                                              = 2(1 + sin A)/{(1 + sin A) * cos A}
                                                              = 2/cos A
                                                              = 2 sec A
                                                              = RHS     

Mddle block 1
(iii) LHS:
     tan θ/(1 – cot θ) + cot θ/(1 – tan θ)
 = (sin θ/cos θ)/(1 – cos θ/sin θ) + (cos θ/sin θ)/(1 – sin θ/cos θ)
= (sin θ/cos θ)/{(sin θ – cos θ)/sin θ} + (cos θ/sin θ)/{(cos θ – sin θ)/cos θ}
= sin2 θ/{cos θ(sin θ – cos θ)} + cos2 θ/{sin θ(cos θ – sin θ)}
= sin2 θ/{cos θ(sin θ – cos θ)} – cos2 θ/{sin θ(sin θ – cos θ)}
= (sin3 θ – cos3 θ)/{cos θ  * sin θ * (sin θ – cos θ)}
= {(sin2 θ + cos2 θ + sin θ cos θ)(sin θ – cos θ)}/{cos θ  * sin θ * (sin θ – cos θ)}
= (1 + sin θ cos θ)/(cos θ  * sin θ)              [sin2 θ + cos2 θ = 1]
= 1/(cos θ  * sin θ) + (cos θ  * sin θ)/ (cos θ  * sin θ)
= sec θ cosec θ + 1
= RHS

(iv) LHS
(1 + sec A)/sec A = (1 + 1/cos A)/(1/cos A)
                              = {(cos A + 1)/cos A}/(1/cos A)
                              = (1 + cos A)/1
                              = (1 + cos A)/1 * (1 – cos A)/ (1 – cos A)
                             = (1 – cos2 A)/ (1 + cos A) 
                             = sin2 A/ (1 + cos A)                                  [sin2 θ + cos2 θ = 1]
                             = RHS     

(v) LHS:
   (cos A – sin A + 1)/ (cos A + sin A – 1)  
= {(cos A – sin A + 1)/sin A}/{(cos A + sin A – 1)/sin A}            [divide by sin A]
= (cot A – 1 + cosec A)/ (cot A + 1 – cosec A)
= {cot A + (-1) + cosec A}/ (cot A + 1 – cosec A)
= {cot A + cosec A + cosec2 A – cot2 A}/ (cot A + 1 – cosec A)
= {cot A + cosec A + (cosec A – cot A) (cosec A + cot A)}/ (cot A + 1 – cosec A)
= {(cosec A + cot A) (1 – cosec A + cot A)}/ (cot A + 1 – cosec A)
= cosec A + cot A
= RHS

(vi) LHS:
√{(1 + sin A)/(1 – sin A)} = √[{(1 + sin A)/(1 – sin A)} * {(1 + sin A)/(1 + sin A)}]
                                           = √{(1 + sin A)2/(1 – sin2 A)}
                                           = √{(1 + sin A)2/cos2 A}
                                           = (1 + sin A)/cos A
                                           = 1/cos A + sin A/cos A
                                           = sec A + tan A = RHS

(vii) (sin θ – 2 sin3 θ)/(2cos3 θ – cos θ) = {sin θ(1 – 2 sin2 θ)}/{cos θ(2cos2 θ – 1)}
                                                                    = {sin θ(1 – 2 sin2 θ)}/{cos θ * 2(1 – sin2 θ) – 1)}
                                                                  = {sin θ(1 – 2 sin2 θ)}/{cos θ(2 – 2sin2 θ – 1)}
                                                                  = {sin θ(1 – 2 sin2 θ)}/{cos θ(1 – 2sin2 θ)}
                                                                  = sin θ/cos θ
                                                                  = tan θ
                                                                  = RHS    

(viii) LHS:
   (sin A + cosec A)2 + (cos A + sec A)2
= sin2 A + cosec2 A + 2sin A cosec A + cos2 A + sec2 A + 2cos A cot A
= (sin2 A + cos2 A) + (cosec2 A + sec2 A) + 2sin A * 1/sin A + 2cos A * 1/cos A
= 1 + 1 + cot2 A + 1 + tan2 A + 2 + 2
= 7 + cot2 A + tan2 A
= RHS

(ix) LHS:
    (cosec A – sin A)(sec A – cos A)  = (1/sin A – sin A)(1/cos A – cos A)
                                                             = {(1 – sin2 A)/sin A }{(1 – cos2 A)/cos A}
                                                             = {cos2 A)/sin A }{sin2 A)/cos A}
                                                             = sin A cos A    …………..1
RHS:
1/(tan A + cot A) = 1/(sin A/cos A + cos A/sin A)
                               = 1/{(sin2 A + cos2 A)/(sin A cos A)}
                               = 1/{1/(sin A cos A)}
                               = sin A cos A  ……………2
From equation 1 and 2, we get
(cosec A – sin A)(sec A – cos A) = 1/(tan A + cot A)       

(x) LHS:
(1 + tan2 A)/(1 + cot2 A) = sec2 A/cosec2 A
                                                = (1/cos2 A)/(1/sin2 A)
                                                = sin2 A/cos2 A
                                                = tan2 A    
                                                = RHS               
Again (1 – tan A) 2/(1 – cot A) 2 = {(1 – tan A)/(1 – cot A)}2
                                                     = {(1 – sin A/cos A)/(1 – cos A/sin A)} 2
                                                     = [{(cos A – sin A)/cos A{/{(sin A – cos A)/sin A)}] 2
                                                     = [{(cos A – sin A)/cos A} * {sin A/(sin A – cos A)/sin A}] 2
                                                     = [-{(sin A – cos A)/cos A} * {sin A/(sin A – cos A)/sin A}] 2
                                                     = (-sin A/cos A)2
                                                     = sin2 A/cos2 A
                                                     = tan2 A
                                                     = RHS 

Bottom Block 3
Share with your friends

Leave a Reply