NCERT Solutions Class 10 Mathematics Quadratic Equations Exercise 4.4

Class 10 - Mathematics
Quadratic Equations -Exercise 4.4

NCERT Solutions Class 10 Mathematics Textbook
Top Block 1

Exercise 4.4


Question : 1:Find the nature of the roots of the following quadratic equations. If the real roots exist, find them:
(i) 2x2 – 3x + 5 = 0                              (ii) 3x2 – 4√3x + 4 = 0                 (iii) 2x2 – 6x + 3 = 0

Answer :

(i) 2x2 – 3x + 5 = 0                              
Comparing the given quadratic equation with ax2 + bx + c = 0, we have:            
a = 2, b= – 3, c = 5           
Now discriminant = b2 – 4ac            
                                 = (-3) 2 – 4 * 2 * 5            
                                 = 9 – 40            
                                 = -31 < 0            
Since b2 – 4ac is negative.          
Hence, the given quadratic equation has no real roots.
(ii) 3x2 – 4√3x + 4 = 0
Comparing the given quadratic equation with ax2 + bx + c = 0, we have:            
a = 3, b= -4√3, c = 4           
Now discriminant = b2 – 4ac            
                                 = (-4√3) 2 – 4* 3 * 4            
                                 = 48 – 48            
                                 = 0
Thus, the given quadratic equation has two real roots which are equal.
Here, the roots are: -b/2a and –b/2a
i.e -(-4√3)/(2 * 3) and -(-4√3)/(2 * 3)
⇒ 4√3/6 and 4√3/6
⇒ 2√3/3 and 2√3/3
⇒ 2√3/(√3 * √3) and 2√3/(√3 * √3)
⇒ 2/√3 and 2/√3                             
(iii) 2x2 – 6x + 3 = 0
Comparing the given quadratic equation with ax2 + bx + c = 0, we have:            
a = 2, b= -6, c = 3           
Now discriminant = b2 – 4ac            
                                 = (-6) 2 – 4* 2 * 3            
                                 = 36 – 24            
                                 = 12 > 0
Thus, the given quadratic equation has two real and distinct roots which are given as:
      x = {-b ± √(b2 – 4 * a * c)}/2a
⇒ x = [-(-6) ± √{(-6)2 – 4 * 2 * 3)}]/(2 * 2)
⇒ x = {6 ± √(36 – 24)}/4
⇒ x = (6 ± √12)/4
⇒ x = (6 ± 2√3)/4
⇒ x = 2(3 ± √3)/4
⇒ x = (3 ± √3)/2
Thus, the roots are: (3 + √3)/2 and (3 – √3)/2
 
 


Question : 2:Find the values of k for each of the following quadratic equations, so that they have two equal roots.                                                                                                                                                           
  (i) 2x2 + kx + 3 = 0                                 (ii) kx(x – 2) + 6 = 0

Answer :

(i) 2x2 + kx + 3 = 0                                
Comparing the given quadratic equation with ax2 + bx + c = 0, we get            
a = 2, b = k, c = 3            
For a quadratic equation to have equal roots,            
     Discriminant = 0
⇒ b2 – 4ac = 0
⇒ k2 – 4 * 2 * 3 = 0
⇒ k2 – 24 = 0
⇒ k2 = 24
⇒ k = ±√24
⇒ k = ±2√6

(ii) kx(x – 2) + 6 = 0
⇒ kx2 – 2kx + 6 = 0
Comparing the given quadratic equation with ax2 + bx + c = 0, we get            
a = k, b = -2k, c = 6            
For a quadratic equation to have equal roots,            
     Discriminant = 0
⇒ b2 – 4ac = 0
⇒ (-2k)2 – 4 * k * 6 = 0
⇒ 4k2 – 24k = 0
⇒ 4k(k – 6) = 0
⇒ k = 0, 6
But k cannot be 0 otherwise, the given equation is no more quadratic.
Thus, the required value of k = 6


Question : 3:Is it possible to design a rectangular mango grove whose length is twice its breadth, and the area is 800 m2? If so, find its length and breadth.

Answer :

Let the breadth be x metres.            
So, Length = 2x metres            
Now, Area = Length × Breadth            
                    = 2x * x             
                    = 2x2 metre2            
According to the given condition,            
      2x2 = 800
⇒ x2 = 800/2
⇒ x2 = 400
⇒ x = ±√400                        
⇒ x = 20 and x = -20            
But x = -20 is possible                                (Since breadth cannot be negative).            
So, x = 20            
Now 2x = 2 * 20 = 40            
Thus, length = 40 m and breadth = 20 m


Question : 4:Is the following situation possible? If so, determine their present ages. The sum of the ages of two friends is 20 years.
Four years ago, the product of their ages in years was 48.

Answer :

Let the age of one friend = x years             
The age of the other friend = (20 – x) years             [Since sum of their ages is 20 years]            
Four years ago,            
Age of one friend = (x – 4) years            
Age of the other friend = (20 – x – 4) years       
                                          = (16 – x) years            
According to the condition,            
      (x – 4) × (16 – x) = 48          
⇒ 16x – 64 – x2 – 4x = 48            
⇒ -x2 – 20x – 64 – 48 = 0            
⇒ -x2 – 20x – 112 = 0            
⇒ x2 + 20x + 112 = 0   …………….1            
Here, a = 1, b = 20 and c = 112            
Now, b2 – 4ac = (20) 2 – 4 * 1 * 112            
                         = 400 – 448            
                         = – 48 < 0            
Since b2 – 4ac is less than 0.            
So, the quadratic equation 1 has no real roots.            
Thus, the given equation is not possible.

Mddle block 1

Question : 5:Is it possible to design a rectangular park of perimeter 80 m and area 400 m2? If so, find its length and breadth.

Answer :

Let the breadth of the rectangle be x metres.            
Given, the perimeter of the rectangle = 80 m            
⇒ 2(Length + Breadth) = 80            
⇒ 2(Length + x) = 80
⇒ Length + x = 80/2
⇒ Length + x = 40                         
⇒ Length = (40 – x) metres            
Again, area of the rectangle = Length * breadth            
                                                   = (40 – x) * x            
                                                   = 40x – x2            
Now, according to the given condition,            
Area of the rectangle = 400           
⇒ 40x – x2 = 400            
⇒ -x2 + 40x – 400 = 0            
⇒ x2 – 40x + 400 = 0    …………….1        
Comparing equation (1) with ax2 + bx + c = 0, we get            
a = 1, b = –40, c = 400            
Now, b2 – 4ac = (-40)2 – 4 * 1 * 400            
                          = 1600 – 1600 – 0             
Thus, the equation 1 has two equal and real roots.    
So, x = -b/2a and –b/2a
⇒ x = -(-40)/(2 * 1) and -(-40)/(2 * 1)
⇒ x = 40/2 and 40/2
⇒ x = 20 and 20                    
So, Breadth = x = 20 m 
and length = (40 – x) = (40 – 20) m = 20 m.

Bottom Block 3
Share with your friends

Leave a Reply