NCERT Solutions Class 11 Mathematics Complex Numbers Exercise 5-Misc

Class 11 - Mathematics
Complex Numbers - Exercise 5 - Misc

NCERT Solutions class 11 Mathematics Textbook
Top Block 1

Question 1:
Evaluate: [i18 + (1/i)25]3

Answer:
Given, [i18 + (1/i)25]3
= [i4*4+2 + 1/i4*6+1]3
= [(i4)2 * i2 + 1/{(i4)6 * i}]3
= [-1 + 1/i]3                                  [Since i4 = 1 and i2 = -1]
= [-1 + i/i2]3
= [-1 – i]3
= (-1)3 * [1 + i]3
= – {1 + i3 + 3 * 1 * i(1 + i)}
= – {1 – i + 3i + 3i2}                       [Since i2 = -1]
= – {1 – i + 3i – 3}
= -(-2 + 2i)
= 2 – 2i


Question 2:
For any two complex numbers z1 and z2, prove that
Re (z1z2) = Re z1 Re z2 – Im z1 Im z2

Answer:
Let z1 = x1 + iy1 and z2 = x2 + iy2
Now, z1z2 = (x1 + iy1)(x2 + iy2)
                  = x1(x2 + iy2) + iy1(x2 + iy2)  
                  = x1x2 + i x1y2 + iy1x2 + i2 y2y2
                  = x1x2 + i x1y2 + iy1x2 – y2y2              [Since i2 = -1]
                  = (x1x2 – y1y2) + i(x1y2 + y1x2)
So, Re (z1z2) = x1x2 – y1y2
⇒ Re (z1z2) = Re z1 Re z2 – Im z1 Im z2
Hence, proved.


Question 3:
Reduce {1/(1 – 4i) – 2/(1 + i)}{(3 – 4i)/(5 + i)} to the standard form.

Answer:
Given, {1/(1 – 4i) – 2/(1 + i)}{(3 – 4i)/(5 + i)}
= [{(1 + i) – 2(1 – 4i)}/{(1 – 4i)(1 + i)}]{(3 – 4i)/(5 + i)}
= [{1 + i – 2 + 8i}/{1 + i – 4i – 4i2}]{(3 – 4i)/(5 + i)}
= [{-1 + 9i}/{1 + i – 4i + 4}]{(3 – 4i)/(5 + i)}
= [{-1 + 9i}/{5 – 3i}]{(3 – 4i)/(5 + i)}
= [{-3 + 4i + 27i – 36 i2}/{25 + 5i – 15i – 3i2}]
= [{-3 + 4i + 27i + 36}/{25 + 5i – 15i + 3}]
= [{-3 + 4i + 27i + 36}/{25 + 5i – 15i + 3}]
= (33 + 31i)/(28 – 10i)
= (33 + 31i)/{2 * (14 – 5i)}
= [(33 + 31i)/{2 * (14 – 5i)}] *{2 * (14 + 5i)/ (14 + 5i)}
= [{462 + 165i + 434i + 155 i2}/[2 * (142 – (5i)2]
= [{462 + 165i + 434i – 155}/{2 * (196 + 25)}
= (307 + 599i)/(2 * 221)
= (307 + 599i)/442
= 307/442 + 599i/442
This is the required standard form.


Question 4:
If x – iy = √{(a – ib)/(c – id)}, prove that (x2 + y2)2 = (a2 + b2)/(c2 + d2)

Answer:
Given, x – iy = √{(a – ib)/(c – id)}
                       = √[{(a – ib)/(c – id)} * {(c + id)/(c + id)}]
                       = √[{(ac + bd) + i(ad – bc)}/(c2 + d2)]
Now, (x – iy)2 = {(ac + bd) + i(ad – bc)}/(c2 + d2)
⇒ x2 – y2 – 2ixy = {(ac + bd) + i(ad – bc)}/(c2 + d2)
⇒ (x2 – y2) – 2ixy = (ac + bd)/(c2 + d2) + i(ad – bc)/(c2 + d2)
On comparing real and imaginary part, we get
x2 – y2 = (ac + bd)/(c2 + d2) and -2xy = (ad – bc)/(c2 + d2)  ………………1
Now, (x2 + y2)2 = (x2 – y2)2 + 4 x2y2
                          = {(ac + bd)/(c2 + d2)}2 + {(ad – bc)/(c2 + d2)}2
                          = (a2c2 + b2d2 + 2abcd + a2d2 + b2c2 – 2abcd)/(c2 + d2)2
                          = (a2c2 + b2d2 + a2d2 + b2c2)/(c2 + d2)2   
                          = {a2(c2 + d2) + b2(c2 + d2)}/(c2 + d2)2 
                          = {(a2 + b2)(c2 + d2)}/(c2 + d2)2
                          = (a2 + b2)/(c2 + d2)  
Hence, proved.
 


Question 5:
Convert the following in the polar form:
(i) (1 + 7i)/(2 – i)2                                         (ii) (1 + 3i)/(1 – 2i)

Answer:
(i) Let z = (1 + 7i)/(2 – i)2            
              = (1 + 7i)/(4 + i2 – 4i)              
              = (1 + 7i)/(4 – 1 – 4i)
              = (1 + 7i)/(3 – 4i)
              = {(1 + 7i)/(3 – 4i)} * {(3 + 4i)/ (3 + 4i)}       
              = (3 + 4i + 21i + 28i2)/{32 – (4i)2}
              = (3 + 4i + 21i – 28)/(9 + 16)
              = (-25 + 25i)/25                
Let r cos θ = –1 and r sin θ = 1
On squaring and adding, we obtain
      r2(cos2 θ + sin2 θ) = 1 + 1
⇒ r2 = 2                                              [Since cos2 θ + sin2 θ = 1]
⇒ r = √2                 [Since r > 0]
Now, √2 cos θ = -1 and √2 sin θ = 1
⇒ cos θ = -1/√2 and sin θ = 1/√2
⇒ θ = π – π/4 = 3π/4
Now, z = r cos θ + i r sin θ
             = √2(cos 3π/4 + i sin 3π/4)     
This is the required polar form.
(ii) Let z = (1 + 3i)/(1 – 2i)    
              = {(1 + 3i)/(1 – 2i)} * {(1 + 2i)/(1 + 2i)}       
              = (1 + 2i + 3i + 6i2)/{12 – (2i)2}
              = (1 + 2i + 3i – 6)/(1 + 4)
              = (-5 + 5i)/5
              = -1 + i                
Let r cos θ = –1 and r sin θ = 1
On squaring and adding, we obtain
      r2(cos2 θ + sin2 θ) = 1 + 1
⇒ r2 = 2                                              [Since cos2 θ + sin2 θ = 1]
⇒ r = √2                 [Since r > 0]
Now, √2 cos θ = -1 and √2 sin θ = 1
⇒ cos θ = -1/√2 and sin θ = 1/√2
⇒ θ = π – π/4 = 3π/4
Now, z = r cos θ + i r sin θ
             = √2(cos 3π/4 + i sin 3π/4)
This is the required polar form.


Question 6:
Solve the equation 3x2 – 4x + 20/3 = 0

Answer:
The given quadratic equation is 3x2 – 4x + 20/3 = 0
This equation can also be written as 9x2 – 16x + 20 = 0
On comparing this equation with ax2 + bx + c = 0, we get
a = 9, b = –12, and c = 20
Therefore, the discriminant of the given equation is
D = b2 – 4ac = (–12)2 – 4 * 9 * 20 = 144 – 720 = –576
Therefore, the required solutions are = (-b ± √D)/2a
                                                                   = {12 ± √(-576)}/(2 * 9)
                                                                   = {12 ± √(-1) * √576}/18
                                                                   = (12 ± i24)/18                       [Since i = √(-1)]
                                                                   = 6(2 ± i4)/18
                                                                   = (2 ± i4)/3          


Question 7:
Solve the equation x2 – 2x + 3/2 = 0

Answer:
The given quadratic equation is x2 – 2x + 3/2 = 0
This equation can also be written as 2x2 – 4x + 3 = 0
On comparing this equation with ax2 + bx + c = 0, we get
a = 2, b = –4, and c = 3
Therefore, the discriminant of the given equation is
D = b2 – 4ac = (–4)2 – 4 * 2 * 3 = 16 – 24 = –8
Therefore, the required solutions are = (-b ± √D)/2a
                                                                    = {4 ± √(-8)}/(2 * 2)
                                                                    = {4 ± √(-1) * √8}/4
                                                                    = (4 ± i2√2)/4                       [Since i = √(-1)]
                                                                   = 2(2 ± i√2)/4    = (2 ± i√2)/2


Question 8:
Solve the equation 27x2 – 10x + 1 = 0

Answer:
The given quadratic equation is 27x2 – 10x + 1 = 0
On comparing this equation with ax2 + bx + c = 0, we get
a = 27, b = –10, and c = 1
Therefore, the discriminant of the given equation is
D = b2 – 4ac = (–10)2 – 4 * 27 * 1 = 100 – 108 = –8
Therefore, the required solutions are = (-b ± √D)/2a
                                                                    = {10 ± √(-8)}/(2 * 27)
                                                                    = {10 ± √(-1) * √8}/54
                                                                    = (10 ± i2√2)/54                       [Since i = √(-1)]
                                                                   = 2(5 ± i√2)/54
                                                                   = (5 ± i√2)/27


Question 9:
Solve the equation 21x2 – 28x + 10 = 0

Answer:
The given quadratic equation is 28x2 – 28x + 10 = 0
On comparing this equation with ax2 + bx + c = 0, we get
a = 28, b = –28, and c = 10
Therefore, the discriminant of the given equation is
D = b2 – 4ac = (–28)2 – 4 * 21 * 10 = 784 – 840 = –56
Therefore, the required solutions are = (-b ± √D)/2a
                                                                    = {28 ± √(-56)}/(2 * 21)
                                                                    = {28 ± √(-1) * √56}/42
                                                                    = (28 ± i2√14)/42                       [Since i = √(-1)]
                                                                   = 2(14 ± i√14)/42
                                                                   = (14 ± i√14)/21
                                                                   = 14/21 ± i√14/21
                                                                   = 2/3 ± i√14/21


Question 10:             
If z1 = 2 – i, z2 = 1 + i, find |z1 + z2 + 1|/|z1 – z2 + i|

Answer:
Given, z1 = 2 – i, z2 = 1 + i                                                        
Now, |z1 + z2 + 1|/|z1 – z2 + i| =|2 – i + 1 + i + 1|/|2 – i – 1 – i + i|
                                                      =|4/(2 – 2i)|
                                                      =|4/{2(1 – i)|
                                                      = |2/(1 – i)|
                                                      = |{2/(1 – i)} * {(1 + i)/ (1 + i)}|
                                                      = |2(1 + i)/(12 – i2)|     
                                                      = |2(1 + i)/(1 + 1)|
                                                      = |2(1 + i)/2|
                                                      = |(1 + i)|
                                                      = √(12 + 12
                                                      = √2
Thus, the value of |z1 + z2 + 1|/|z1 – z2 + i| = √2

Mddle block 1

Question 11:
If a + ib = (x + i)2/(2x2 + 1), prove that a2 + b2 = (x2 + 1)2/(2x + 1)2

Answer:
Given, a + ib = (x + i)2/(2x2 + 1)
                       = (x2 + i2 + 2ix)/(2x2 + 1) 
                       = (x2 – 1 + 2ix)/(2x2 + 1)  
                       = (x2 – 1)/ (2x2 + 1) + 2ix/(2x2 + 1)
On comparing real and imaginary parts, we get
a = (x2 – 1)/ (2x2 + 1), b = 2x/(2x2 + 1)
Now, a2 + b2 = [(x2 – 1)/ (2x2 + 1)]2 + [2x/(2x2 + 1)]2
                       = (x4 + 1 – 2x2 + 4x2)/(2x2 + 1)2      
                       = (x4 + 1 + 2x2)/(2x2 + 1)2   
                       = (x2 + 1)2/(2x2 + 1)2
So, a2 + b2 = (x2 + 1)2/(2x2 + 1)2
Hence,  proved.


Question 12:
Let z1 = 2 – i, z2 = -2 + i. Find
(i) Re{(z1z2)/z1}                                         (ii) Im(1/z1z1)

Answer:
Given, z1 = 2 – i, z2 = -2 + i
(i) z1z2 = (2 – i)(-2 + i)
            = -4 + 2i + 2i – i2
           = -4 + 4i – (-1)
           = -4 + 4i + 1
           = -3 + 4i   
z1 = 2 + i  
So, (z1z2)/z1 = (-3 + 4i)/(2 + i)
                      = {(-3 + 4i)/(2 + i)} * {(2 – i)/ (2 – i)}
                      = (-6 + 3i + 8i – 4i2)/(22 + 12)
                      = (-6 + 3i + 8i + 4)/5
                      = (-2 + 11i)/5
                      = -2/5 + 11i/5
On comparing real part, we get
Re{(z1z2)/z1} = -2/5      
(ii) (1/z1z1) = 1/{(2 – i)(2 + i)} = 1/(22 + 12) = 1/5
On comparing imaginary part, we get
Im (1/z1z1) = 0


Question 13:
Find the modulus and argument of the complex number (1 + 2i)/(1 – 3i)

Answer:
Let z = (1 + 2i)/(1 – 3i)
         = {(1 + 2i)/(1 – 3i)} * {(1 + 3i)/(1 + 3i)}
         = (1 + 3i + 2i + 6i2)/(12 + 32)
         = (1 + 3i + 2i – 6)/10
         = (-5 + 5i)/10
                      = -1/2 + 1i/2
Given, z = r cos θ + i r sin θ
Let r cos θ = -1/2 and r sin θ = 1/2
On squaring and adding, we obtain
     (r cos θ)2 + (r sin θ)2 = (-1/2)2 + (1/2)2
⇒ (r2 cos2 θ + r2 sin2 θ) = 1/4 + 1/4
⇒ r2 (cos2 θ + sin2 θ) = 1/2  
⇒ r2 = 1/2                                   [Since cos2 θ + sin2 θ = 1]
⇒ r = 1/√2                                  [Since r > 0]
So, Modulus = 1/√2
Now, cos θ/√2 = -1/2 and sin θ/√2 = 1/2
⇒ cos θ = -1/√2 and sin θ = 1/√2
Now, argument θ = π – π/4 = 3π/4
Therefore, the modulus and argument of the given complex number are 1/√2 and 3π/4
respectively.


Question 14:
Find the real numbers x and y if (x – iy)(3 + 5i) is the conjugate of –6 – 24i.

Answer:
Given, (x – iy)(3 + 5i) = 3x + I * 5x – I * 3y + 5y
                                     = (3x + 5y) + i(5x – 3y)
Conjugate of (x – iy)(3 + 5i) = (3x + 5y) – i(5x – 3y)
Now, (3x + 5y) – i(5x – 3y) = -6 – 24i
Compare real and imaginary term, we get
        3x+ 5y = -6 ………..1
and 5x – 3y = 24 ………..2
After solving equation 1 and 2, we get
x =3 and y= -3
Thus, the values of x and y are 3 and –3 respectively.


Question 15:
Find the modulus of {(1 + i)/(1 – i)} – {(1 – i)/(1 + i)}

Answer:
Given expression is
    {(1 + i)/(1 – i)} – {(1 – i)/(1 + i)}
= [{(1 + i)*(1 + i)}/{(1 – i)*(1 + i)}] – [{(1 – i)*(1 – i)}/{(1 + i)*(1 – i)}]
= {(1 + i)2/(1 – i2)} – {(1 – i)2/(1 – i2)}
= (1 + i2 + 2i)/(1 + 1) – (1 + i2 – 2i)/(1 + 1)            (since i2 = -1)
= (1 – 1 + 2i)/2 – (1- 1 – 2i)/2
= 2i/2 + 2i/2
= i + i
= 2i
= 0 + 2i
Now modulus = √(02 + 22) = √4 = 2
So, modulus of the expression = 2


Question 16:
If (x + iy)3 = u + iv, then show that: u/x + v/y = 4(x2 – y2)

Answer:
Given, (x + iy)3 = u + iv
⇒ x3 + (iy)3 + 3 * x * iy(x + iy) = u + iv
⇒ x3 – iy3 + 3x2yi + 3xy2i2 = u + iv
⇒ x3 – iy3 + 3x2yi – 3xy2 = u + iv
⇒ (x3 – 3xy2) + i(3x2y – y3) = u + iv
On comparing real and imaginary part, we get
u = x3 – 3xy2 and v = 3x2y – y3
Now, u/x + y/v = (x3 – 3xy2)/x + (3x2y – y3)/y
                            = x2 – 3y2 + 3x2 – y2
                            = 4 x2 – 4y2     
                            = 4(x2 – y2)
So, u/x + v/y = 4(x2 – y2)


Question 17:
If α and β are different complex numbers with |β| = 1, then find |(βα)/(1 – αβ)|

Answer:
Let α = a + ib and β = x + iy
It is given that |β| = 1
⇒ √(x2 + y2) = 1
⇒ x2 + y2 = 1   ………..1
Now, |(βα)/(1 – αβ)|= |{(x + iy) – (a – ib)}/{1 – (a – ib)(x + iy)}|
                                         = |{(x – a) + i(y – b)}/{1 – (ax + aiy – ibx + by)}|
                                         = |{(x – a) + i(y – b)}/{(1 – ax – by) + i(bx – ay)}|
                                         = |{(x – a) + i(y – b)}|/|{(1 – ax – by) + i(bx – ay)}|   
                                         = √{(x – a)2 + (y – b)2}/√{(1 – ax – by)2 + (bx – ay)2
                                         =                     √(x2 + a2 – 2ax + y2 + b2 – 2by)
                                             √(1 + a2x2 – b2y2 -2ax + 2abxy – 2by + b2x2 – a2y2 – 2abxy)
                                        =                     √{(x2 + a2) – 2ax + y2 + b2 – 2by)}
                                                        √{1 + a2(x2 + y2) + b2 (y2 + x2) – 2ax – 2by}
                                       = √{1 + a2 + b2 – 2ax – 2by)}/ √{1 + a2 + b2 – 2ax – 2by)}      [From eq. 1]
                                       = 1
So, |(βα)/(1 – αβ)|= 1


Question 18:
Find the number of non-zero integral solutions of the equation |1 – i|x = 2x

Answer:
Given, |1 – i|x = 2x
⇒ √{12 + (-1)2} x = 2x
⇒ √{1 + 1} x = 2x
⇒ (√2)x = 2x
⇒ 2x/2 = 2x
⇒ x/2 = x
⇒ x = 2x
⇒ 2x – x = 0
⇒ x = 0
Thus, 0 is the only integral solution of the given equation. Therefore, the number of nonzero
integral solutions of the given equation is 0.
 
 


Question 19:
If (a + ib) (c + id) (e + if) (g + ih) = A + iB, then show that:
(a2 + b2)(c2 + d2)(e2 + f2)(g2 + h2) = A2 + B2

Answer:
Given, (a + ib)(c + id)(e + if)(g + ih) = A + iB
⇒ |(a + ib)(c + id)(e + if)(g + ih)| = |A + iB|
⇒ |(a + ib)||(c + id)||(e + if)||(g + ih)| = |A + iB|
⇒ √(a2 + b2) √(c2 + d2) √(e2 + f2) √(g2 + h2) = √(A2 + B2)
On squaring both sides, we get
(a2 + b2)(c2 + d2)(e2 + f2)(g2 + h2) = A2 + B2
Hence, proved.


Question 20:
If {(1 + i)/(1 – i)}m then find the least positive integral value of m.

Answer:
Given, {(1 + i)/(1 – i)}m = 1
⇒ [{(1 + i) * (1 + i)}/{(1 – i) * (1 + i)}]m = 1
⇒ [{(1 + i)2}/{(1 – i2)}]m = 1
⇒ [(1 + i2 + 2i)/{1 – (-1)}]m = 1                      [Since i2 = -1]
⇒ [(1 – 1 + 2i)/{1 + 1}]m = 1
⇒ [2i/2]m = 1
⇒ im = 1
Now, im is 1 when n = 4                                [Since i4 = 1]
So, the least value of n is 4

Bottom Block 3

Click here to visit Official CBSE website

Click here for NCERT solutions

Click here to visit Official Website of NCERT

Click here to download NCERT Textbooks

Share with your friends

Leave a Reply