NCERT Solutions Class 11 Mathematics Trigonometric-Functions Exercise 3-Misc

Class 11 - Mathematics
Trigonometric Function - Exercise - Misc

NCERT Solutions class 11 Mathematics Textbook
Top Block 1

Question 1:
Prove that: 2cos π/13 cos 9π/13 + cos 3π/13 cos 5π/13 = 0

Answer:
LHS:
    2cos π/13 * cos 9π/13 + cos 3π/13 * cos 5π/13
= 2cos π/13 * cos 9π/13 + 2 cos{(3π/13 + 5π/13)/2} * cos{(3π/13 – 5π/13)/2}
= 2cos π/13 * cos 9π/13 + 2 cos 4π/13 * cos(-π/13)
= 2cos π/13 * cos 9π/13 + 2 cos 4π/13 * cos π/13
= 2cos π/13(cos 9π/13 + cos 4π/13)
= 2cos π/13[2 cos{(9π/13 + 4π/13)/2} * cos{(9π/13 – 4π/13)/2}]
= 2cos π/13[2 cos π/2 * cos 5π/26]
= 2cos π/13 * 2 * 0 * cos 5π/26
= 0
= RHS


Question 2:
Prove that: (sin 3x + sin x)sin x + (cos 3x – cos x)cos x = 0

Answer:
LHS:
    sin 3x + sin x) sin x + (cos 3x – cos x) cos x
= {2 * sin(3x + x)/2 * cos (3x – x)/2}sinx + {-2 * sin (3x + x)/2 * sin(3x – x)/2}*cosx
= 2 * sin 2x *cos x * sin x – 2 * sin 2x * sin x * cos x
= 0 = RHS


Question 3:
Prove that: (cos x + cos y)2 + (sin x – sin y)2 = 4 cos2 (x + y)/2

Answer:
LHS:
    (cos x + cos y)2 + (sin x – sin y)2
= cos2 x + cos2 y + 2 * cos x * cos y + sin2 x + sin2 y – 2 * sin x * sin y
= cos2 x + sin2 x + cos2 x + sin2 y + 2 * cos x * cos y – 2 * sin x * sin y
= 1 + 1 + 2 * cos x * cos y – 2 * sin x * sin y
= 2 + 2 * cos (x + y)
= 2[1 + cos(x + y)]
= 2[1 + 2cos2 (x + y)/2 – 1]
= 4 cos2 (x + y)/2
= RHS


Question 4:
Prove that: (cos x – cos y)2 + (sin x – sin y)2 = 4 sin2 (x – y)/2

Answer:
LHS:
    (cos x – cos y)2 + (sin x – sin y)2
= cos2 x + cos2 y – 2 * cos x * cos y + sin2 x + sin2 y – 2 * sin x * sin y
= cos2 x + sin2 x + cos2 x + sin2 y – 2 * cos x * cos y – 2 * sin x * sin y
= 1 + 1 – 2 * cos x * cos y – 2 * sin x * sin y
= 2 – 2 * cos (x – y)
= 2[1 – cos(x – y)]
= 2[1 – {1 – 2 sin2 (x – y)/2}]
= 2[1 – 1 + 2 sin2 (x – y)/2]
= 4 sin2 (x – y)/2
= RHS

Mddle block 1

Question 5:
Prove that: sin x + sin 3x + sin 5x + sin 7x = 4 * cos x * cos 2x * sin 4x

Answer:
LHS:
     sin x + sin 3x + sin 5x + sin 7x
 = 2 * sin(x + 3x)/2 * cos(x – 3x)/2 + 2 * sin(5x + 7x)/2 * cos(5x – 7x)/2
 = 2 * sin(4x/2) * cos(-2x/2) + 2 * sin(12x/2) * cos(-2x/2)
 = 2 * sin 2x * cos(-x) + 2 * sin 6x * cos(-x)
 = 2 * sin 2x * cos x + 2 * sin 6x * cos x
 = 2 * cos x * (sin 2x + sin 6x)
 = 2 * cos x * {sin(2x + 6x)/2 * cos(2x – 6x)/2}
 = 2 * cos x * {2 * sin(8x/2) * cos(-4x/2)}
 = 2 * cos x * {2 * sin 4x * cos(-2x)}
 = 4 * cos x * sin 4x * cos 2x
 = 4 * cos x * cos 2x * sin 4x
= RHS
 
 
 


Question 6:
Prove that: {(sin 7x + sin 5x) + (sin 9x + sin 3x)}/{(cos 7x + cos 5x) + (cos 9x + cos 3x)} = tan 6x

Answer:
We know that
sin A + sin B = 2sin (A + B)/2  * cos (A – B)/2
and cos A + cos B = 2cos (A + B)/2  * cos (A – B)/2
LHS:
    {(sin 7x + sin 5x) + (sin 9x + sin 3x)}/{(cos 7x + cos 5x) + (cos 9x + cos 3x)}
= [2sin (7x + 5x)/2 * cos (7x – 5x)/2 + 2sin (9x + 3x)/2 * cos (9x – 3x)/2]/[ 2cos (7x + 5x)/2 * cos
(7x – 5x)/2 + 2cos (9x + 3x)/2 * cos (9x – 3x)/2]
= [2 * sin 6x * cos x + 2 * sin 6x * cos 3x]/ [2 * cos 6x * cos x + 2 * cos 6x * cos 3x]
= [2 * sin 6x(cos x + cos 3x)]/ [2 * sin 6x(cos x + cos 3x)]
= tan 6x
= RHS


Question 7:
Prove that: sin 3x + sin 2x – sin x = 4 * sin x * cos(x/2) * cos(3x/2)

Answer:
LHS:
   sin 3x + sin 2x – sin x
= sin 3x – sin x + sin 2x
= 2 * cos(3x + x)/2 * sin(3x – x)/2 + sin 2x
= 2 * cos 2x * sin x + 2 * sin x * cos x                      (sin 2x = 2 * sin x * cos x)
= 2 *sin x * (cos 2x + cos x)
= 2 * sin x * 2 * cos(2x + x)/2 *cos(2x – x)/2
= 4 * sin x * cos(3x/2) * cos(x/2)
= RHS


Question 8:
Find sin x/2, cos x/2 and tan x/2, if tan x = −4/3, x in quadrant II

Answer:
Here, x is in quadrant II.
i.e π/2 < x < π
⇒ π/4 < x/2 < π/2
Therefore, sin x/2, cos x/2 and tan x/2 are lies in first quadrant.
It is given that
tan x = -4/3
Now, sec2 x = 1 + tan2 x = 1 + (-4/3)2 = 1 + 16/9 = 25/9
So, cos2 x = 9/25
⇒ cos x = ± 3/5
Since x is in quadrant II, cos x is negative.
So, cos x = -3/5
Now, cos x = 2cos2 x/2 – 1
⇒ -3/5 = 2cos2 x/2 – 1
⇒ 2cos2 x/2 = 1 – 3/5
⇒ 2cos2 x/2 = 2/5
⇒ cos2 x/2 = 1/5
⇒ cos x = 1/√5             [Since cos x is positive]
Again sin2 x/2 + cos2 x/2 = 1
⇒ sin2 x/2 + (1/√5)2 = 1
⇒ sin2 x/2 + 1/5 = 1
⇒ sin2 x/2 = 1 – 1/5
⇒ sin2 x/2 = 4/5
⇒ sin x/2 = 2/√5              [Since sin x/2 is positive]
tan x/2 = (sin x/2)/(cos x/2) = (2/√5)/(1/√5) = 2
Thus, the respective values of sin x/2, cos x/2 and tan x/2 are 2√5/5, √5/5 and 2.


Question 9:
Find sin x/2, cos x/2 and tan x/2 for cos x = −1/3, x in quadrant II

Answer:
Here, x is in quadrant II.
i.e π < x < 3π/2
⇒ π/2 < x/2 < 3π/4
Therefore, cos x/2 and tan x/2 are negative whereas sin x/2 is positive.
Given, cos x = -1/3
Now, cos x = 1 – 2 sin2 x/2
⇒ sin2 x/2 = (1 – cos x)/2
                    = {1 – (-1/3)}/2
                    = (1 + 1/3)/2
                    = (4/3)/2
                    = 2/3
⇒ sin x/2 = √(2/3)
⇒ sin x/2 = (√2/√3) * (√3/√3)
⇒ sin x/2 = √6/3
       cos x = 2 cos2 x/2 – 1
⇒ cos2 x/2 = (1 + cos x)/2                  
                    = {1 + (-1/3)}/2
                    = (1 – 1/3)/2
                    = (2/3)/2
                    = 1/3
⇒ cos x/2 = -1/√3                         [Since cos x/2 is negative]
⇒ cos x/2 = (-1/√3) * (√3/√3)
⇒ cos x/2 = -√3/3
tan x/2 = (sin x/2)/(cos x/2) = (√2/√3)/( -1/√3) = -√2
Thus, the values of sin x/2, cos x/2 and tan x/2 are: √6/3, -√3/3, -√2


Question 10:
Find sin x/2, cos x/2 and tan x/2 for sin x = 1/4, x in quadrant II

Answer:
Here, x is in quadrant II.
i.e π/2 < x < π
⇒ π/4 < x/2 < π/2
Therefore, sin x/2, cos x/2 and tan x/2 are all positive.
Given, sin x = 1/4
cos2 x = 1 – sin2 x
            = 1 – (1/4)2
            = 1 – 1/16
            = 15/16
cos x = -√15/4                                          [since cos x is negative in quadrant II]
Now, sin2 x/2 = (1 – cos x)/2
                         = {1 – (-√15/4)}/2
                         = (1 + √15/4)/2
                         = (4 + √15)/8
⇒ sin x/2 = √[(4 + √15)/8]                     [Since sin x/2 is positive]
⇒ sin x/2 = √[{(4 + √15)/8} * (2/2)]
⇒ sin x/2 = √[(8 + 2√15)/16]
⇒ sin x/2 = √{(8 + 2√15)}/4
Again, cos2 x/2 = (1 + cos x)/2
                         = {1 + (-√15/4)}/2
                         = (1 – √15/4)/2
                         = (4 – √15)/8
⇒ cos x/2 = √[(4 – √15)/8]                          [Since cos x/2 is positive]
⇒ cos x/2 = √[{(4 – √15)/8} * (2/2)]
⇒ cos x/2 = √[(8 – 2√15)/16]
⇒ cos x/2 = √{(8 – 2√15)}/4
Now, tan x/2 = (sin x/2)/(cos x/2)
                        = [√{(8 + 2√15)}/4]/[ √{(8 – 2√15)}/4]
                        = [√(8 + 2√15)]/[ √(8 – 2√15)]
                        = √[{(8 + 2√15)]/(8 – 2√15)} * {(8 + 2√15)]/(8 + 2√15)}]
                        = √[(8 + 2√15)2]/(64 – 60)]  
                        = (8 + 2√15)/2
                        = 4 + √15      
Therefore, value of sin x/2, cos x/2 and tan x/2 are: √{(8 + 2√15)}/4, √{(8 – 2√15)}/4 and 4 + √15      

Bottom Block 3

Click here to visit Official CBSE website

Click here for NCERT solutions

Click here to visit Official Website of NCERT

Click here to download NCERT Textbooks

Share with your friends

Leave a Reply