Class 6 - Mathematics
Chapter - Simple Equations : Exercise 4.2
Top Block 1
Question : 1.Give first the step you will use to separate the variable and then solve the equations:
(a) x – 1 = 0
(b) x + 1 = 0
(c) x – 1 = 5
(d) x + 6 = 2
(e) y – 4 = –7
(f) y – 4 = 4
(g) y + 4 = 4
(h) y + 4 = –4
Answer :
(a) x – 1 = 0
⇒ x – 1 + 1 = 0 + 1 [Adding 1 both sides]
⇒ x = 1
(b) x + 1 = 0
⇒ x + 1 – 1 = 0 – 1 [Subtracting 1 both sides]
⇒ x = –1
(c) x – 1 = 5
⇒ x – 1 + 1 = 5 + 1 [Adding 1 both sides]
⇒ x = 6
(d) x + 6 = 2
⇒ x + 6 – 6 = 2 – 6 [Subtracting 6 both sides]
⇒ x = –4
(e) y – 4 = –7
⇒ y – 4 + 4 = –7 + 4 [Adding 4 both sides]
⇒ y = –3
(f) y – 4 = 4
⇒ y – 4 + 4 = 4 + 4 [Adding 4 both sides]
⇒ y = 8
(g) y + 4 = 4
⇒ y + 4 – 4 = 4 – 4 [Subtracting 4 both sides]
⇒ y = 0
(h) y + 4 = –4
⇒ y + 4 – 4 = –4 –4 [Subtracting 4 both sides]
⇒ y = –8
Question : 2.Give first the step you will use to separate the variable and then solve the equations
(a) 3l = 42
(b) b⁄2 = 6
(c) p⁄7 = 4
(d) 4x = 25
(e) 8y = 36
(f) z⁄3 = 5⁄4
(g) a⁄5 = 7⁄15
(h) 20t = –10
Answer :
(a) 3l = 42
⇒ 3l 3 = 423 [Dividing both sides by 3]
⇒ l = 14
(b) b⁄2 = 6
⇒ b⁄2 × 2 = 6 × 2 [Multiplying both sides by 2]
⇒ b = 12
(c) p⁄7 = 4
⇒ p⁄7 × 7 = 4 × 7 [Multiplying both sides by 7]
⇒ p = 28
(d) 4x = 25
⇒ 4x⁄4 = 25⁄4 [Dividing both sides by 4]
⇒ x = 25⁄4
(e) 8y = 36
⇒ 8y⁄8 = 36⁄8 [Dividing both sides by 8]
⇒ y = 9⁄2
(f) z⁄3 = 5⁄4
⇒ z⁄3 × 3 = 5⁄4 × 3 [Multiplying both sides by 3]
⇒ z = 15⁄4
(g) a⁄5 = 7⁄15
⇒ a⁄5 x 5 = a⁄15 x 5 [Multiplying both sides by 5]
⇒ a = 7⁄3
(h) 20t = –10
⇒ 20t⁄20 = – 10⁄20 [Dividing both sides by 20]
⇒ t = – 1⁄2
Question : 3 Give first the step you will use to separate the variable and then solve the equations
(a) 3n – 2 = 46
(b) 5m + 7 = 17
(c) 20p⁄3 = 40
(d) 3p⁄10 = 6
Answer :
(a) 3n – 2 = 46
Step I: 3n – 2 +2 = 46 + 2
⇒ 3n = 48
[Adding 2 both sides]
Step II: 3n⁄3 = 48⁄3
⇒ n = 16 [Dividing both sides by 3]
(b) 5m + 7 = 17
Step I: 5m + 7 – 7 = 17 – 7 ⇒ 5m = 10 [Subtracting 7 both sides]
Step II: a⁄5 = 10⁄5
⇒ m = 2 [Dividing both sides by 5]
(c) 20p⁄3 = 40
Step I: 20p⁄3 × 3 = 40 × 3 ⇒ 20p = 120 [Multiplying both sides by 3]
Step II: 20p⁄20 = 120⁄20
⇒ p = 6 [Dividing both sides by 20]
(d) 3p⁄10 = 6
Step I: 3p⁄10 × 10 = 6 × 10
⇒ 3p = 60 [Multiplying both sides by 10]
Step II: 3p⁄3 = 60⁄3 ⇒ p = 20 [Dividing both sides by 3]
Question : 4.Solve the following equation:
(a) 10p = 100
(b) 10p + 10 = 100
(c) p⁄4 = 5
(d) -p⁄3 = 5
(e) 3p⁄4 = 6
(f) 3s = –9
(g) 3s + 12 = 0
(h) 3s = 0
(i) 2q = 6
(j) 2q – 6 = 0
(k) 2q + 6 = 0
(l) 2q + 6 = 12
Answer :
(a) 10p = 100
⇒ 10p⁄10 = 100⁄10 [Dividing both sides by 10]
⇒ p = 10
(b) 10p + 10 = 100
⇒ 10p + 10 – 10 = 100 – 10 [Subtracting both sides 10]
⇒ 10p = 90
⇒ 10p⁄10 = 90⁄10 [Dividing both sides by 10]
⇒ p = 9
(c) p⁄4 = 5
⇒ p⁄4 × 4 = 5 × 4 [Multiplying both sides by 4]
⇒ p = 20
(d) -p⁄3 = 5
⇒ -p⁄3 × (–3) = 5 × (–3) [Multiplying both sides by – 3]
⇒ p = –15
(e) 3p⁄4 = 6
⇒ 3p⁄4 × 4 = 6 × 4 [Multiplying both sides by 4]
⇒ 3p = 24
⇒ 3p⁄3 = 24⁄3 [Dividing both sides by 3]
⇒ p = 8
Mddle block 1
⇒ 3s⁄3 = -9⁄3 [Dividing both sides by 3]
⇒ s = –3
(g) 3s + 12 = 0
⇒ 3s + 12 – 12 = 0 – 12 [Subtracting both sides 10]
⇒ 3s = –12
⇒ 3s3 = –123 [Dividing both sides by 3]
⇒ s = –4
(h) 3s = 0
⇒ 3s⁄3 = 0⁄3 [Dividing both sides by 3]
⇒ s = 0
(i) 2q = 6
⇒ 2q⁄2 = 6⁄2 [Dividing both sides by 2]
⇒ q = 3
(j) 2q – 6 = 0
⇒ 2q – 6 + 6 = 0 + 6 [Adding both sides 6]
⇒ 2q = 6
⇒ 2q⁄2 = 6⁄2 [Dividing both sides by 2]
⇒ q = 3
(k) 2q + 6 = 0
⇒ 2q + 6 – 6 = 0 – 6 [Subtracting both sides 6]
⇒ 2q = –6
⇒ 2q⁄2 = -6⁄2 [Dividing both sides by 2]
⇒ q = –3
(l) 2q + 6 = 12
⇒ 2q + 6 – 6 = 12 – 6 [Subtracting both sides 6]
⇒ 2q = 6
⇒ 2q⁄2 = 6⁄2 [Dividing both sides by 2]
⇒ q = 3